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Abstract mobility scenarios” ZL02]. This difficulty is supported
by our own anecdotal experience. Conducting the outdoor
Because itis difficult and costly to conduct real-world maxperiment reported in this study required over two years
bile ad hoc network experiments, researchers commoofypreparation by a team of more than ten researchers and
rely on computer simulation to evaluate their routing pratudent interns. In fact, Zhang et al. report that their lit-
tocols. However, simulation is far from perfect. A growerature search uncovered only a “few” real world systems
ing number of studies indicate that simulated results cdrat haveeverbeen implemented, and none that have been
be dramatically affected by several sensitive simulatitried on a scale beyond a dozen nod&s(J2]. Our review
parameters. It is also commonly noted that most simof the MANET literature, two years later, confirms this
lation models make simplifying assumptions about radiadservation.
behavior. This situation casts doubt on the reliability and Because of this difficulty of running real world experi-
applicability of many ad hoc network simulation results ments, it is clear that, at least for now, computer simula-
In this study, we begin with a large outdoor routing exion will remain the standard for ad hoc network evalua-
periment testing the performance of four popular ad htion. However, this reliance on simulation demands in re-
algorithms (AODV, APRL, ODMRP, and STARA). Weturn a careful scrutiny of common simulation approaches.
present a detailed comparative analysis of these four iFer simulation to be used as a meaningful evaluation tech-
plementations. Then, using the outdoor results as a basique, there must be a concerted effort to understand the
line of reality, we disprove a set of common assumpaodels being used—including their specific characteris-
tions used in simulation design, and quantify the impagts, and their relative validity. This conclusion is sup-
of these assumptions on simulated results. We also mpegeted by an increasing body of research that demon-
specifically validate a group of popular radio models witétrates that the outcome of wireless network simulation
our real-world data, and explore the sensitivity of various quite sensitive to the underlying models. For example,
simulation parameters in predicting accurate results. \ean experiment conducted by Takai et aIMBO1], it
close with a series of specific recommendations for simg-shown that altering parameters in commonly used ra-
lation and ad hoc routing protocol designers. dio models has a non-uniform effect on ad hoc protocol
behavior, sometimes even reversing the relative ranking
among protocols tested in the same scenario. The simu-
1 Introduction lation results reported in this study similarly demonstrate
dramatic changes in outcomes when different radio mod-
It is difficult to perform an accurate evaluation of a mcels are used (see Section 4.5). And a recent artidleEE
bile ad hoc network (MANET). In a perfect world, ad ho&ommunicationsvarns that "An opinion is spreading that
network protocols would always be validated with exte@ne cannot rely on the majority of the published results
sive real world experimentation. The best way to predied performance evaluation studies of telecommunication
the behavior of a network is to deploy it in a real envirorietworks based on stochastic simulation, since they lack
ment, and then observe what happens. For obvious reédibility” [PJLOZ. It then proceeds to survey 2200 pub-
sons, however, such experimentation is rarely done. lghed network simulation results to point out systemic
Zhang et al. point out, “running MANET systems in &daws.
non-trivial size is costly due to high complexity, required We of course do not suggest that there is dght an-
hardware resources, and inability [to test] a wide rangesWer to the question of simulation validity. Accordingly,



we do not attempt to identify any omgght model that al- technical report KNEO3] (with a revision currently un-
ways performs best. But we do, however, argue that simder conference submission), and another conference pa-
lation designers should explicitly address the assumptigpges in preparation that describes the large-scale outdoor
made in their models, and the influence that these assuM*NET routing experiment, and analyzes the perfor-
tions may have on simulation results. We believe thatance data. This thesis is the first complete synthesis
this approach will allow the MANET community to confi-of these various experiments into one comprehensive ex-
dently find relevance for simulation outcomes beyond taenination of accuracy in ad hoc network simulation. We
specific simulator configuration in which a particular exiope that our use of real experimental results to ground
periment was run. our simulation analysis will make this work particularly
With this in mind, we identify several specific quesuseful for simulation designers, and provide an important
tions that simulation designers should consider and striventribution to the growing field of ad hoc networking re-
to answer to ensure that their results are as meaningfusearch.
possible:

« What assumptions are made by the radio propagatén  Outdoor routing experiment

model? ]
As mentioned above, few MANET researchers conduct

e How realistic are these assumptions? real-world experiments. The cost and complexity are pro-
hibitive for most projects. In this section, however, we
e What is the effect of these assumptions on the mrow caution to the wind, and join a team that is up to the
sults? challenge of testing four popular ad hoc routing protocols
. . . ~in-adynamic outdoor environment. Specifically, research
e Has the radio model been validated with experimegngineer Robert Gray organized a real-world routing ex-
tal data, and if so, how does it perform relative tgeriment as part of a larger multi-disciplinary university
reality? For example, does the model tend to prgssearch initiative led by Dartmouth Professor George Cy-
dict a higher rate of network connectivity than whalenko! Gray worked on the scenario design with Susan
is observed under experimental conditions? DoeSy¢Grath, Eileen Entin and Lisa Shay, and the algorithms
exaggerate the maximum range of the network's igere implemented by Aaron Fiske, Chris Masone, Nikita
dios? What is the significance of these variations f@ubrovsky, and Michael DeRosa. Our role in this project
understanding the simulation results? is to gather and organize the data produced by the experi-

. : .ment and then provide a detailed comparative analysis of
e What simulation parameters are used? How sensitiye < its P P y
Ere tZe :ﬁ sultsl to chanoglges lntth_es?hparan;_etekﬁ_;[ ??hls description of real network behavior, in addition to
thogvregult;\/a ues used constrain the applicability Being a stand-alone contribution to the research commu-

nity, also forms an empirical baseline that aids our subse-

. . . ._quent validation of ad hoc network simulation.
In this study, we detail the necessity of these questloﬁs,

and use real experimental data combined with a wireless )
network simulator to explore answers as they apply to2zal ~The algorithms
group_of commonly used.rad!o propggatlo'n models. M.:ﬁ\e outdoor experiment tests four algorithms. APRL,
specifically, we a) describe in detail the implementation, . . : .
: which stands for Any-Path Routing without Loops, is
and results of a large outdoor MANET routing experi- : . .
R : . proactive distance-vector routing protocd{Kp8].
ment; b) identify the extent to which most ad hoc networ] . .
A, . ther than using sequence numbers, APRL uses ping
researchers make common simplifying assumptions abgu e
. L L : ssages before establishing new routes to guarantee
the radio model used in simulation; c) use experimenta

oosp—free operation. AODV, or Ad-hoc On-Demand Vec-

data to quantitatively demonstrate that these assumptions . . :
N . for, is an on-demand routing algorithm—routes are cre-

are far from realistic; d) explore how these assumption ; . i
afed as needed at connection establishment and main-

may lead to misleading results in ad hoc network S'mUIfa'ined thereafter to deal with link breakagBR9g.

tion; e) validate the predictive power of our selected mo 'DMRP stands for the On-Demand Multicast Routing

els against an experimental baseline; f) explore the rgle

g L : ) ) {otocol LGCO0Z. For each multicast group, ODMRP
of important parameters in simulation results; and g) list_. .~ .
aintains a mesh, instead of a tree, for alternate and re-

recommendatlons for the designers of protocols, mOdEg)ﬁhdant routes. ODMRP does not depend on another uni-
and simulators.

. . . cast routing protocol and, in fact, can be used for uni-
The results described in this study span over two years gp

of work, including one published papet{N T04], one Lhitp://actcomm.dartmouth.edu




cast routing. STARA, the System and Traffic DependeMANET applications. Finally, every second each laptop
Adaptive Routing Algorithm, is based on shortest-patfueried the wireless driver to obtain the signal strength of
routing [GK97]. It uses mean transmission delay instedtle most recent packetceivedfrom every other laptop,

of hop count as the distance measure. and recorded this signal strength information in a third
log.> Querying every second for all signal strengths was
much more efficient than querying for individual signal
strengths after each received packet.

The outdoor routing experiment took place on a rectan-These three logs provide all the data that we need to
gular athletic field measuring approximately 225 (nortltompare the performance of the four routing algorithms.
south) by 365 (east-west) meters. This field can f&e laptops automatically ran each routing algorithm for
roughly divided into four flat, equal-sized sections, thregs minutes, generating random UDP data traffic for thir-
of which are at the same altitude, and one of which is agen out of the fifteen minutes, and pausing for two min-
proximately four to six meters lower. There was a shoutes between each algorithm to handle cleanup and setup
steep slope between the upper and lower sections.  chores. The traffic-generation parameters were set to pro-

Each Linux laptop had a wireless cafdoperating in duce the traffic volumes observed in previously explored
peer-to-peer mode at 2 Mb/s. This fixed rate madepitototype situational-awareness applicaticBs0q, ap-
much easier to conduct the experiment, since it obviateximately 423 outgoing bytes (including UDP, IP and
the need to track (and later model) automatic changes=ihernet headers) per laptop per second, a relatively mod-
each card’s transmission rate. est traffic volume. The routing algorithms produce addi-

To reduce interference from the campus wireless nébnal traffic to discover or maintain routing information.
work, the experiment was conducted on a field physicaote that each transmitted data packet was destined for
distant from campus, and the cards were configuredaoly a single recipient, reducing ODMRP to the unicast
use wireless channel 9 for maximum separation from tbase.

standard channels (1, 6 and 11). In addition, each lapinally, the laptops moved continuously. At the start of
top collected signal-strength statistics for each receivgft experiment, the participants were divided into equal-
packet! Finally, each laptop had a Garmin eTrex GP§zed groups of ten each, each participant given a laptop,
unit attached via the serial port. These GPS units did Rg{d each group instructed to randomly disburse in one of
have differential GPS capabilities, but were accurate fgs four sections of the field (three upper and one lower).
within thirty feet during the experiment. The participants then walked continuously, always pick-
Each laptop recorded its current position (latitude, lofhg a section different than the one in which they were
gitude and altitude) once per second, synchronizing #grrently located, picking a random position within that
clock with the GPS clock to provide sub-second, albejection, walking to that position in a straight line, and then
not millisecond, time SynChronization. Every three Sefépeating_ This approach was chosen since it was sim-
onds, thebeacon service programn each laptofproad- ple, but still provided continuous movement to which the
casta beacon packet containing the current laptop poghuting algorithms could react, as well as similar spatial
tion (as well as the last known positions of the other lagistributions across each algorithm.
tops). Each laptop that received such a beacon updateg), iy the experiment, seven laptops generated no net-

its internr?l [t))osition tablg, an_d SJ"SEBEE"S; ?cknowledg- dwrgrk traffic due to hardware and configuration issues, and
mentto the beacon sender via - Each laptop recordg, eighth laptop generated the position beacons only for

allincoming and outgoing beacons and acknowledgmemg first half of the experiment. We use the data from the

in another log file. The beacons provide a continuous p?‘é’maining thirty-two laptops, although when we simulate
ture of network connectivity, and, fortunately, also repre-

) . fater, we use thirty-three laptops since only seven laptops
sent network traffic that would be exchanged in many re(?énerated no network traffic at all. In addition, STARA

27 Gateway Solo 9300 running Linux kernel version 2.2.19 witdenerated an overwhelming amoun_t of control traffi_c, and
PCMCIA Card Manager version 3.2.4. though we exclude the STARA portion of the experiment
%We used a Lucent (Orinoco) Wavelan Turbo Gold 802.11b. Afrom later analysis of radio behavior, we still present its

though these cards can transmit at different bit rates and can auto-adigl, i the outdoor results sections that follow. The reason
this bit rate depending on the observed signal-to-noise ratio, we used an

ad hoc mode in which the transmission rate was fixed at 2 Mb/s. Spe¥€ €xclude it later is because its unusual behavior makes

ically we used firmware version 4.32 and the proprietary ad hoc “demid"a poor reference point for the specific task of validating

mode originally developed by Lucent. Although the demo mode hagmuylation results.

been deprecated in favor of the IEEE 802.11b defined IBSS, we used the

Lucent proprietary mode to ensure consistency with a series of ad hoc

routing experiments of which this outdoor experiment was the culminat- 5For readers familiar with Linux wireless services, note that we in-

ing event. creased the IWSPY limit from 8 to 64 nodes, so that we could capture
“We used thewvlan _cs, rather than therinoco _cs, driver. signal-strength information for the full set of laptops.

2.2 The experiment




2.3 The results 1

To evaluate the relative performance of these algorithnf‘gs
we use the following four metricsmessage delivery ra- g
tio, communication efficiency, hop count, and end-to-en#l o |
latency. Combined, these measures provide a good u@—
derstanding of the various factors involved in the differeng o4 |
observed behaviors. In the sections that follow, we giveg%l
detailed definition of each metric, and compare the resuffs o2 ¢

0.8

for each algorithm. ® —
g H H 0 L L L L
Before proceeding, there are several important terms AODV APRL ODMRP  STARA
used in our analysis that must first be defined: Algorithm

e A messagés a group of dummy bytes produced byigure 1: Message delivery ratio comparison of all four
a node’s traffic generator for intended transportatigfigorithms.

to a randomly-selected destination. All of our gen-

erated messages are small enough to fit into a single

data packet. We also note that AODV performs better than APRL.
This result indicates the advantage of a reactive approach
) 90 route discovery in our mobile scenario. If the nodes
message data. Therefore, evargssageequires the jp, experiment had been more static, or if the physi-

transmission of at least orlttata packeto reach its ¢4 anvironment had otherwise provided less opportunity
destination. A message also can generate more tgnjiny preakages, it is possible that we would see less

one data packet, depending on the route length, gftdy a5 hetween AODV's and APRL's delivery ratios.
the delivery strategy of the algorithm. It also is pogy 44gition, APRL does not minimize a hop count met-
sible _for amessage to gen_eratedata !oackets, ifthe e when choosing a route. Subsequently, its average hop
sending node fails to identify any active route towargy, \nt (shown in Section 2.3.3 below) for successful mes-
the message’s destination. sage transmissions is larger than what we see for AODV.

e A control packetis any transmitted packet that doedis use of longer routes opens up more opportunity for
not contain message data. Control packets are fepped packets, and therefore it also may have lowered
means by which most algorithms communicate rodPRLS performance.

e A data packetis any transmitted packet containin

ing information with nearby nodes. STARAs message delivery ratio is the worst of the
group. We attribute the algorithm’s poor performance in
2.3.1 Message delivery ratio our experiment to an excessive amount of control traffic.

Its continual probing of the network created overwhelm-

We calculate the message delivery ratio for each algoritting congestion. Accordingly, we recognize that our imple-
by dividing the total number of messages received at thaientation of STARA needs additional flow restrictions on
intended destination by the total number of messages gete- control traffic to constrain the unchecked propagation
erated. This metric measures each algorithm’s overall sa€-control packets. Piyush Gupta proposes one possible
cess in providing reliable communication. solution to this excessive traffic problem by noting that

We note that this metric is typically referred toecket multiple copies of an identical control packet arriving at
delivery ratioin similar examinations of routing protocola common node could be condensed into a fewer number
behavior. In this study, however, we substitute the woud packets before being rebroadcastup0q. Gupta also
messagedor packetto keep our terminology consistenhotes that “extensive simulation study and protocol de-
with the precise definitions provided above. velopment [are] needed to make STARA a viable routing

Figure 1 shows the message delivery ratio for each pfotocol” [Gup0Q. We agree, adding that our experience
the four algorithms. A striking result from this compariwith STARA reinforces the importance of using detailed
son is the dominance of ODMRP. This high delivery ratstochastic simulation to help validate and enhance routing
is best explained by ODMRP’s aggressive flooding aprotocols during the design phase.
proach to route discovery. Instead of using control packets
to discover message routes, this algorithm floods the rzt- 5 C L ffici
work with data packets. This greatly increases the cha 8 ommunication efficiency

that a message will reach its intended destination. Figure2 shows, for each algorithm, the average number of
6Each message was approximately 1200 bytes in size, including%‘l?lt.a pac!(ets transmltteq .folr each generated message. We
relevant headers. derive this number by dividing the total number of trans-
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mitted data packets by the total number of generated mes- AODV 750
sages. This metric approximates each algorithm’s data APRL 33.30
transportation efficiency. ODMRP 45.59

ODMRP once again dominates the plot. This is not un- STARA 150.67

expected, as ODMRP floods the network with data pack-
ets when trying to locate a route. Accordingly, the numb®able 1: The average number of packets transmitted (data
of data packet transmitted for each message in ODMRRckets and control packets) for each generated message.
significant. If the size of the messages being transmitted
is large, then the effect of this data packet load on avail-
able bandwidth would be dramatic. In our experiment,
however, the generated traffic size was relatively modedftransmitted control packets by the total number of gen-
approximately 423 outgoing bytes per laptop per secofdated messages. This allows us to compare each algo-
allowing ODMRP to avoid excessive congestion. If, ofithm’s control traffic efficiency.
the other hand, the traffic had been concentrated on fewep TARA clearly produced the most control traffic. It
destinations, or if the network had been more static, Wenerated, on average, 150 control packets for each mes-
would observe fewer ODMRP data packets as it woug@ge. This overwhelming result evidences the excessive
not need to flood the network as often. control traffic that we cite as causing STARA's poor per-
AODV transmitted 1.32 data packets per messad@/mance in our experiment.
while APRL transmitted only .90. The difference between APRL generated the next largest amount of control traf-
these two values, though small in magnitude, is notablie, with 32 control packets, on average, for each message.
As shown below in Section 2.3.3, APRL's average haODV was the most efficient, generating only six con-
count for successfully received messages is larger thegi packets, on average, for each message. These results
AODV. Therefore, if both algorithms had equally accudemonstrate that in our scenario, with light traffic and dy-
rate routing information, APRL's data packets per megamic connectivity, one of the costs of APRL's periodic
sage value should be larger than AODV, as its routes tepr@active route discovery, as oppose to AODV’s reactive
to require more hops. This is not, however, what we o@pproach, is a substantial increase in control traffic.
serve. APRL's smaller value of data packets per messagé is difficult to find comparative significance for the
indicates a lack of quality routing information. As we exdDMRP control traffic result, as control and data packets
plore in more detail in the next section, APRL had a largege not clearly distinguished for this algorithm. In our ex-
number of messages dropped at their source (without gpariment, we count packets not containing message data
erating any data packets), because an active route caddontrol packets. For ODMRP this would include only
not be identified. the reply traffic generated in response to the algorithm’s
STARA transmitted the fewest data packets, which il®oding of the network with data packets, even though, in
attribute to the packet drops due to the congestion createany ways, the flooded data packets are acting the role
by the algorithms control traffic. of control packets. A more meaningful comparison of
Figure 3 shows, for each algorithm, the average nur®DMRP’s communication efficiency can be found with
ber of control packets transmitted for each generated méwstotal packets per messagelues that we present next.
sage. We derive this number by dividing the total numberTablel shows, for each algorithm, the average number



of packets transmitted for each generated message. These
values are calculated by adding the total number of con-
trol packets and data packets transmitted, and then divig- 4 |
ing this sum by the total number of generated messagé;s.
This measure approximates the overall communication ef- ° [
ficiency of each algorithm. 5
AODV is clearly the most efficient, requiring, on av-
erage, only 7.5 packets for each message. Surprisingdy,
ODMRP does not fare much worse than APRL. One
might assume that ODMRP’s aggressive network flooding |, ‘ ‘ ‘ ‘
approach would lead to a more significant increase in traf- AODV APRLAIgorithrT?DMRP STARA
fic costs as compared to APRL's periodic route advertise-
ments. However, ODMRP’s 45.59 packets transmitted fefy e 4: The average number of hops traveled for suc-
each message is not overwhelmingly larger than APR'{:'ﬁssfully received messages.
33.30. It should, however, be noted that if the size of the
data packets being transmitted is large, APRL would gain
a more noticeable lead over ODMRP, as the majority of After STARA, AODV required the next fewest num-
APRLSs traffic is in the form of streamlined control packper of hops for successful packets. It is expected that
ets/ whereas ODMRP includes copies of its data packoDV should have a lower average hop count than APRL
ets with much of its traffic. Considering that AODV angr ODMRP, as the former finds routes on demand, and
ODMREP are both reactive algorithms that flood the nedelects for a shorter path, whereas the latter two do not
work to discover routes, it is also surprising to note howonsider hop count in selecting a route.
many fewer packets per message are required by AODV|n fact, ODMRP has the largest average hop count
This result emphaSizeS thatitis important for prOtOCOl d@ajue. Because many of its messages arrive random|y
signers to carefully consider the flow restrictions on theig their destination during the undirected route discovery

route discovery packets. Finally, we note that this expgjhase, ODMRP is unable to always use the most efficient
iment generated a modest amount of messages. Becaysgtified route.

of the number of messages being sent, it might gain M@ each algorithm. Specifically, they show the total num-
of an efficiency advantage over its reactive counterpartgr of messages that traveled each number of hops. They

=]
[~
o 2
j=2)
o

the amount of data traffic was greatly increased. also include an independent bar for messages that were
successfully received, and an independent bar for mes-
2.3.3 Hop count sages that failed. This allows a more detailed understand-

ing of the relationship between route size and message

Figure 4 shows, for each algorithm, the average numbggjiery success. They also include a bar for zero hops,

of hops successfully received messages traveled 1o regfli, represent failed message that never left the sending

their destination. We limit our sample to successful M&sast for lack of a route. We omit a detailed ODMRP hop
sages because we are interested in characterizing the it distribution because its flooding approach to mes-
ical route selected by each algorithm. sage delivery makes it impossible to define a comparable
For ODMREP, it is difficult to calculate hop count Va'*nop count value for failed messages.
ues because messages can be received at their destinatig[bure5 shows that the vast majority of STARA mes-
multiple times from multiple paths of varying length. We; 465 never made it beyond their source node. Success-
avoid this problem in this plot by counting only the firsf,| messages are clustered almost entirely in the one-hop
copy of each message to successfully arrive. bucket, with 513 of 598 total successful messages trav-
STARA has the lowest average hop count_for SUCCe¥Hhg one hop, 73 traveling two, and only 12 success-
fully received packets. This result, however, is due to tig messages traveling any further. The maximum path
excessive control traffic congestion which made SUCCeRSgth traveled by any successful message was 7 hops.
ful packet transmission difficult. In this environment, onlyfpare were also a small number of failed messages that

packets being sent to a neighbor had a good chance of §{igjeled unusually long routes before failing. The longest
ceeding. Therefore we cannot gain a good understandiy@gn, route was 33 hops.

O,f t.he typica}l_route selected by this algorithm in more for- Considering that this algorithm was transmitting, on av-
giving conditions. erage, 150 packets for each message, interference likely

7APRL uses only a simple binary indication of whether or not a roufe@used the large number of (_)'h_‘)p message failures that we
exists in its routing table, leading to small control packets. observe. Interference also limited the ability of the algo-
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Figure 5: Distribution of STARA hop count values for alFigure 6: Distribution of APRL hop count values for all
messages, successful messages, and failed messageanessages, successful messages, and failed messages.

3500 T T
rithm to maintain reliable routing information. The failed Failod Mossages.

packets observed to travel over unusually long paths are ** [ Successiul Messages - 1
likely caused by invalid and looping routes. This is nog 2500 f
suprising, as the congestion generated by STARA Wouﬁi 2000 [
make it difficult for any node to maintain a full set of con-z
sistently valid routes. 8

Figure6 shows that APRL also had a significant num= 1000
ber of messages fail without leaving their source node. sqp |
Successful messages are divided almost equally between oL ‘ ‘ — ‘ ‘ ‘
one and two hops, and failed messages decrease regularly o 1 2 3 4 5 8 7 8 9
from one to four hops in proportion to the decreasing Number of Hops

number of total messages in each of those buckets. e L
g -E?gure 7: Distribution of AODV hop count values for all

longest path traveled by any message was 12 hops. essages, successful messages, and failed messages
The large number of observed 0-hop message fall- ges, ges, ges.

ures reveals that the majority of generated messages were

dropped because APRL could not identify a valid route & ges which traveled that distance were successful. The
the desired destination. The implication of this Strikin@ngest path traveled by any message was 8 hops_

result is that APRL's periodic route advertising scheme The implication of these results is that AODV’s on-
was unable to consistently maintain adequate routing femand approach to route discovery worked well in our
formation in our experiment. While we admit that thergynamic environment. When the algorithm could identify
would be many situations in our experiment where a roéroute, which it did much more frequently than APRL,
physically did not exist between two nodes, the large dif\as subsequently successful in delivering a message to
ference between APRL's and AODV's 0-hop failures indits intended destination. This indicates quality route in-
cates this more serious problem (AODV is shown in Figormation, and the advantage of AODV in finding more
ure7). Itis also interesting to note that failed messaggge-hop paths than APRL, increasing its overall delivery

outnumber successful messages in the 1'h0p bucket. H’ﬂjécessy and Conserving network resources.
relationship is the opposite of what we see with AODV.

The explanation for this behavior may involve APRL no}t‘? 4 E

. : . nd-to-end latency

selecting for shorter routes. With an average route length

of 2.11 hops (as compared to AODV’s 1.61), APRL creZalculating end-to-end latency for ad hoc networks is dif-

ates more opportunity for invalid routes or collisions tficult. The main obstacle is a lack of synchronization be-

create failed packet transmissions after one hop. tween the individual node clocks. This creates a situation
Figure 7 shows that AODV has far fewer 0-hop mesin which a comparison of receiver and sender timestamps

sage failures. The majority of its successful messagdesot sufficient for generating accurate latency values.

traveled one hop, but those that traveled two, three, or fouln our experiment we did not run NTP. We made this

hops significantly outnumber the failed messages in thdgcision to avoid extra computational overhead and band-

respective buckets. This is especially noticeable in thedth usage. Instead, we relied on the GPS units to pro-

two and three-hop buckets where almabtof the mes- vide accuracy to our clocks. Specifically, we set each node

1500 -




clock from the GPS units before the experiment, and reset 4 pm—
them from the units every 10 seconds during the expeg- ss| Hop Count -~ i
iment. Since we required regular GPS queries for othé;r sl
purposes (such as tracking node mobility), this approaéch
did not introduce significant extra overhead, and requiregl
no bandwidth usage. We found, however, that our node

clocks still drifted from each other on the order of tens t¢ 5[ | 1
a few hundreds of milliseconds. We attribute this to deg 1} 11
lays in reading the time from the GPS unit and invoking os | ]
the kernel time system calls. =

Though relatively small, this clock drift is still signifi-

cant as many of our calculated end-to-end latency values

are within the same order of magnitude. In this studyigyre 8: A comparison of average corrected end-to-end

we introduce a novel approach to better approximate tirl%@ency, plotted with average hop count for successful
synchronization in mobile ad hoc nodes. We take adva}ﬂéssages.

tage of the fact that our nodes were configured to broad-
cast a simple beacon at a regular interval (once every 3
seconds), which provides us with a convenient s¢inoé the same beacon; and 3) using the average observed time
synchronization eventsSpecifically, if we want to syn- skew calculated over a given bucket duration is not as ac-
chronize the clocks between nodeand nodeB at timet, curate as always searching out the closest single time syn-
we analyze our beacon logs to find a beacon that was sgnbnization event.
by a third node(, and that was received by bothand  Accordingly, we do not present our end-to-end latency
B near timet. Assuming thatd andB should receive the values as precise measurements. We do, however, main-
broadcast beacon more or less at the same instant, wetaémthat our corrected values are more accurate indica-
calculate the skew between the two clocks around timé&ons of transit time than relying on uncorrected times-
by comparing what time they each receiv@t beacon. tamps. We use them here to provide meaningful insight
This concept can be extended to find the clock skew lagr matters such as the relative ranking of the algorithms.
tween all node pairs at all times by locating an appropkive leave the refinement of this technique as future work.
ate time synchronization event for eaatode 4, nodep, Figure 8 shows the average corrected end-to-end la-
time;) 3-tuple. tency value and the average hop count value for success-
To be computationally efficient, however, we approxful messages. We find the expected relationship between
mated this calculation by splitting the duration of each and-to-end latency and hop count. For AODV, APRL, and
gorithm’s run into a group of 13 equally-sized time buckoDMRP, the average end-to-end latency value increases
ets. For each bucket, we calculated the average skew vatueghly proportionately to the average hop count value.
for every pair of nodes. We did so by performing the ske®TARA is an exception because it shows a low average
calculation for every time synchronization event that obop count, and a large average end-to-end latency. This
curred within the bucket'’s time range, and then averagiaggnormality can be explained by the large amount of com-
the skew values generated for each pair. putational overhead generated by the excess amount of
To subsequently calculate the end-to-end latency foeentrol traffic. The notable volume of control packets in
given message sent from to B, we use the send timeboth the receive and send queues of all nodes could signif-
to locate the appropriate bucket, and then use the averagetly increase the delay between the sender generating
skew value stored for4, B) in that bucket to synchronizea message and the receiver processing it.
the clocks. If there are no time synchronization events
betweenA and B during the relevan_t bucke_t duration, wi 4 conclusions
throw out the message, and do not include its latency value
in our metric. Any conclusions we draw from this outdoor experiment
We recognize that this approach is only approximateust be qualified by the conditions of our particular test-
for several reasons: 1) it is unrealistic to assume thatjy environment. A markedly different scenario could
two nodesA and B will receive and timestamp a broadproduce markedly different results. For example, our
cast beacon at the same instant, as computational factardes were highly mobile, and our terrain was non-
unique to each node can affect how long it takes for thaiform (though there were few permanent obstructions),
event to actually be logged; 2) in a multi-hop routing ereading to a dynamic state of connectivity. This environ-
vironment, it is possible that the sender and the receiveent may disadvantage an algorithm like APRL that does
of a given packet are too distant to have recently receivect seek routes on demand. Similarly, our traffic load was
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relatively light® which may have advantaged an aggres- avoids the reality that would be clear in more detailed
sive data-packet flooding algorithm like ODMRP, which  simulation: If control traffic is not carefully con-

may have failed under heavier traffic conditions. trolled, it can destabilize the entire network through
With these qualifications in mind, we present the fol- excessive congestion. Gupta later identifies the po-
lowing conclusions: tential for this problem in his PhD thesis, where he
briefly suggests one possible solutio®up0(d. He
e AODV is efficient and effective. Though its mes- goes on to suggest that more extensive simulation

sage delivery ratio was not as high as ODMRP, it is necessary before the design could be considered
delivered messages significantly better than APRL complete. We agree, and further recommend fiat
and STARA. More importantly, on all measures of  protocol designers integrate more detailed simulation
communication efficiency, AODV generated by far  into their design process so as to more effectively ad-
the least amount of traffic for each message. And dress necessary practical concerns, such as flow con-
in terms of route selection, AODV was successful in  trol, in their original protocol specifications.
consistently finding short paths, giving it the addi-

tional advantage of having the lowest average end-e Reactive is better than proactive in dynamic envi-
to-end latency value. In an environment with limited ~ ronments. APRL and STARA's poor performance,
bandwidth, or limited energy resources, AODV isa as compared to AODV and ODMRP’s relative suc-
good choice as a provider of low-cost, adaptable, re- cess, highlights the general advantage of a reac-

liable, and fast communication. tive approach to routing in a dynamic environment.
) ) N ) Our analysis of APRL shows an unnecessarily large
e ODMRP is optimal for specific scenarios, bad for number of messages dropped before leaving their

others. This algorithm generates a lot of overhead  gource node, and STARA crippled itself with ex-
traffic. Its network flooding is bandwidth intensive,  cessive proactive discovery. It is a fair assumption
and if data packets are large, ODMRP could fail due  nat if we had restrained STARA's control traffic to
to congestion. At the same time, however, it had 5 reasonable level, it would have faced the same
the highest message delivery ratio of all four algo-  |ack of quality routing information demonstrated by
rithms. This indicates that in a situation in which  ApRL. Similarly, if we had decreased APRL's route
bandwidth and energy resources are plentiful, data agvertisement interval to increase the timeliness of
packets are small, and communication reliability is  jts routing information, it would have suffered from
crucial, ODMRP is a good choick. an excess amount of control traffic. This observa-
tion underscores the perhaps unresolvable tension
between control traffic and message delivery success
present in proactive algorithms operating in dynamic
environments: If you make your algorithm efficient,
its reliability drops; if you make your algorithm re-
liable, its efficiency drops. Reactive approaches are
clearly preferable for scenarios with variable connec-
tivity.

e APRL performed poorly in our environment. Its
message delivery ratio was low, its overhead was
large, and it had a substantial percentage of packets
fail at their source. Our results indicate that APRL
had a hard time maintaining reliable routing infor-
mation in our relatively dynamic environment. In
any scenario comparable to our experiment, APRL
shows no clear advantage over a reactive algorithm
such as AODV.

« Our STARA implementation emphasizes the im- 3 Common assumptions in ad hoc

portance of flow control. In their original paper, network simulation

Gupta and Kumar validated STARA with a simple

stochastic simulation that did not model collision oo\ that we have described the behavior of a real ad hoc

interference effects GK97]. Their analytic valida- pepyork, we can explore how close simulation comes to

tion demonstrated that STARA performs better tha,oducing this reality. In this section, we demonstrate

other approaches because of its dynamic avoidarggy the commonly used theoretical models of radio be-

of highly trafficked routes. Their analysis, howevepayior are far simpler than reality, and we codify these

8Messages were generated, on average, only once every three §€E‘P“flcaﬂ9ns mt_o a grOl_Jp of six aslsumptlons commonly

onds. made by simulation designers. Using data from our out-

9Because we reduced ODMRP to the unicast case for our experimefgor experiment, we prove these six assumptions to be
we can not specifically address its effectiveness as a provider of mL‘J i )
cast communication. We hope, however, that our analysis of its genera‘ . . .
communication efficiency and reliability can still act as useful guides for IN the following section, we use a wireless network

those interested in effective multicast communication. simulator, configured to mimic our real world experiment,




to quantify and describe the impact of these assumptions
on simulation results.

3.1 Radios in theory and practice

The top example in Figur@ provides a simple model of
radio propagation, one that is used in many simulations
of ad hoc networks; contrast it to the bottom example of
a real signal-propagation map, drawn at random from the
web. Measurements from an ad hoc network of Berkeley
Motes demonstrate a similar non-uniform non-circular be-
havior [GKW™02]. The simple model is based on Carte-
sian distance in an X-Y plane. More realistic models take
into account antenna height and orientation, terrain and
obstacles, surface reflection and absorption, and so forth.

Of course, not every simulation study needs to use the
most detailed radio model available, nor explore every
variation in the wide parameter space afforded by a com-
plex model. The level of detail necessary for a given an-
alytic or simulation study depends on the characteristics
of the study. The majority of results published to date use
the simple models, however, with no examination of the
sensitivity of results to the (often implicit) assumptions
embedded in the model.

There are real risks to protocol designs based on overly
simple models of radio propagation. First, “typical” net-

work connectivity graphs_ look _quite different in realit){:igure 9: Real radios, such as the one at the bottom, are
than they do on a Cartesian grid. An antenna placed e complex than the common theoretical model at the

of a hill has direct connectivity with all other nearby ragyy - Here different colors, or shades of gray, represent
dios, for example, an effect that cannot be observed{ferent signal qualities.

simulations that represent only flat plains. Second, it is

often difficult in reality to estimate whether or not one

has a functioning radio link between nodes, because sgjeonnected or one is not. Given a long enough straight
nals fluctuate greatly due to mobility and fading as wedkgment in a trajectory, this leads to a low rate of change
as interference. Broadcasts are particularly hard-hit iylink connectivity. As such, this model makes it easy to
this phenomenon as they are not acknowledged in tygetermine when two nodes are, or are not, “neighbors” in
cal radio systems. Protocols that rely on broadcasts (ethe ad hoc network sense.

beacons) or “snooping” may therefore work significantly In the more realistic model (P), the quality of the link is
worse in reality than they do in simulation. likely to vary rapidly and unpredictably, even when two

Figure10depicts one immediate drawback to the overadios are nominally “in range.” In these more realis-
simplified model of radio propagation. The three differefit cases, it is by no means easy to determine when two
models in the figure, the Cartesian “Flat Earth” model,reodes have become neighbors, or when a link between
three-dimensional model that includes a single hill, andwo nodes is no longer usable and should be torn down.
model that includes (absorptive) obstacles, all produce émthe figure, suppose that a link quality of 50% or better
tirely different connectivity graphs, even though the nodessufficient to consider the nodes to be neighbors. In the
are in the same two-dimensional positions. As all tlltagram, the practical model would lead to the nodes be-
nodes move, the ways in which the connectivity graphg neighbors briefly, then dropping the link, then being
changes over time will be different in each scenario.  neighbors again, then dropping the link.

Figure11 presents a further level of detail. At the top, In addition to spatial variations in signal quality, a ra-
we see a node’s trajectory past the theoretical (T) adid’'s signal quality varies over time, even for a station-
practical (P) radio range of another node. Beneath it ey radio and receiver. Obstacles come and go: people
sketch the kind of change in link quality we might exand vehicles move about, leaves flutter, doors shut. Link
pect under these two models. The theoretical model @nnectivity can come and go; one packet may reach a
gives a simple step function in connectivity: either omaeighbor successfully, and the next packet may fail. Both

Typical theoretical model

Source: Comgate Engineering
http://www.comgate.com/ntdsign/wireless.html
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lowing sections we make this argument more precise.
Figure 10: The Flat Earth model is overly simplistic.

3.2 Models used in research

short-term and long-term changes are common in realijye surveyed a set of MobiCom and MobiHoc proceed-
but not considered by most practical models. Some, s from 1995 through 2003. We inspected the simula-
not all, of this variation can be masked by the physical g§pn sections of every article in which RF modeling issues
data-link layer of the network interface. seemed relevant, and categorized the approach into one of
Although the theoretical model may be easy to usieree bins:Flat Earth, Simple andGood This catego-
when simulating ad hoc networks, it leads to an incafization required a fair amount of value judgment on our
rect sense of the way the network evolves over time. Fsdrt, and we omitted cases in which we could not deter-
example, in Figurdl, the link quality (and link connec- mine these basic facts about the simulation runs.
tivity) varies much more rapidly in practice than in the- Figure 12 presents the results. Note that even in
ory. Many algorithms and protocols may perform muale best years, the Simple and Flat-Earth papers signifi-
more poorly under such dynamic conditions. In someantly outnumber the Good papers. A few, such as Takai
particularly if network connectivity changes rapidly witfet al. [TMBO01], deserve commendation for thoughtful
respect to the distributed progress of network-layer éfiannel models.
application-layer protocols, the algorithm may fail due Flat Earth models are based on Cartesian X—Y prox-
to race conditions or a failure to converge. Simple rémity, that is, nodesd and B communicate if and only if
dio models fail to explore these critical realities that cafbdeA is within some distance of node.
dramatically affect performance and correctness. For exSimple modelsare, almost without exceptioms-2
ample, Ganesan et al. measured a dense ad hoc netwestiels using the CMU 802.11 radio modEM02]. This
of sensor nodes and found that small differences in th@del provides what has sometimes been termed a “real-
radios, the propagation distances, and the timing of collitic” radio propagation model. Indeed it is significantly
sions can significantly alter the behavior of even the simhore realistic than the “Flat Earth” model, e.g., it models
plest flood-oriented network protocol&KW*02]. packet delay and loss caused by interference rather than
In summary,“good enough” radio models are quite inessuming that all transmissions in range are received per-
portant in simulation of ad hoc networks. The Flat Earfiectly. We still call it a “simple” model, however, because
model, however, is by no means good enough. In the fdl-embodies many of the questionable axioms we detalil
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owing via a probabilistic modelHV02]. The problem
5Good | with ns-2 ’s shadowing model is that the model does
@ Simple | not consider correlations: a real shadowing effect has
B Flat Earth | strong correlations between two locations that are close
to each other. More precisely, the shadow fading should
| be modeled as a two-dimensional log-normal random
process with exponentially decaying spatial correlations
| (see [Bud9] for details). To our knowledge, only a few
| simulation studies include a valid shadowing model. For
| example, WIiPPET considers using the correlated shad
owing model to compute a gain matrix to describe ra-
dio propagation scenariokLM +00]. WiPPET, however,
only simulates cellular systems. The simulation model
we later use for this study considers the shadowing ef-
fect as a random process that is temporally correlated; be-

tween each pair of nodes we use the same sample from the

Figure 12: The number of papers in each year of Mobicqgly_orma distribution if the two packets are transmitted
and MobiHoc that fall into each category. within a pre-specified time peridd.

Good modelshave fairly plausible RF propagation
treatment. In general, these models are used in papers

vides a simple free-space model (often termed a “Fri%Qnmt'rr;?efrg?t;hee:f;lcutl?}:;ilﬁggizgeo?%n;mﬂg'tﬁ aalr:itz)r?or;o
free-space” model in the literature) and a two-ray ground: propag )

reflection model. Both are described in the-2 docu- give a flavor of these "good” models, witness this quote
ment packageV02. from one such papeERO0Q:

The free-space model is similar to the “Flat Earth”
model described above, as it does not include effects of
terrain, obstacles, or fading. It does, however, model sig-
nal strength with somewhat finer detall/ ¢*) than just experimental data collected in a large number
present” or “absent. of existing macro-cells in several suburban ar-

The two-ray ground-reflection model, which considers 55 jn New Jersey and around Seattle, Chicago,

both the direct and ground-reflected propagation path be-  atjanta, and Dallas. ... [Equation follows with
tween transmitter and receiver, is better, but not partic- parameters for antenna location in 3-D, wave-

ularly well suited to most MANET simulations. It has length, and six experimentally determined pa-
been reasonably accurate for predicting large-scale sig- rameters based on terrain and foliage types.]
nal strength over distances of several kilometers for cel- | the results presented in this section, . . . the
lular telephony systems using tall towers (heights above (grrain was assumed to be either hilly with light
50m), and also for line-of-sight micro-cell channels in e density or flat with moderate-to-heavy tree
urban environments. Neither is characteristic of typical density. [Detailed parameter values follow.]
MANET scenarios. In addition, while this propagation

model does take into account antenna heights of the tw@f course, the details of RF propagation are not al-

nodes, it assumes that the earth is flat (and there are Qflys essential in good network simulations; most criti-
erwise no obstructions) between the nodes. This may&g is the overall realism of connectivity and changes in
a plausible simplification when modeling cell towers, bigonnectivity (Are there hills? Are there walls?). Along
not when modeling vehicular or handheld nodes becayggse lines, we particularly liked the simulations of well-
these are often surrounded by obstructions. Thus it toqiown routing algorithms presented by Johansson et al.
a “Flat Earth” model, even more so if the modeler dogg| H+99], which used relatively detailed, realistic sce-
not explicitly choose differing antenna heights as a noflgrios for a conference room, event coverage, and disas-
moves!° ter area. Although this paper employed tiee2 802.11
More recentlyns-2 added a third channel model—theadio model, it was rounded out with realistic network ob-
“shadowing” model described earlier by Leeep83— stacles and node mobility.
to account for indoor obstructions and outdoor shad-

1A recent study by Yuen et al. proposes a novel approach to modeling
10see also Lundberd [In0Z], Sections 4.3.4-4.3.5, for additional re-the correlation as a Gauss-Markov proceés402]. We are currently
marks on the two-ray model’s lack of realism. investigating this approach.
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below. In particular, the standard releasengf2 pro-

In our simulations, we use a model for the path
loss in the channel developed by Erceg et al.
This model was developed based on extensive
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3.3 Common MANET axioms to each card’s transmission rate. Most current wireless
cards are multi-rate, however, which could leadf-

For the sake of clarity, let us be explicit about some bagi, 6: Each packet is transmitted at the same bit rate.

“axioms” upon which most MANET research explicitiyye |eave the effects of this axiom as an area for future
or implicitly relies. These axioms, not all of which ar

orthogonal, deeply shape how network protocols behaveyq 156 note that in the following analysis we do not

We note that all of these axioms are contradicted by {)gq jata from the STARA portion of the outdoor experi-
a.ctual measqrements reported in the next section. ment. We were concerned that the excessive control traf-
: The world is flat. fic generated by this algorithm might impede an accurate

A radlq s transmission area is circular. assessment of the observed radio behavior.
. All radios have equal range.

. If I can hear you, you can hear me (symmetry).

. If  can hear you at all, | can hear you perfectly.

. Signal strength is a simple function of distance. The world is flat.

There are many combinations of these axioms seen in

the literature. In extreme cases, the combination of thes€€ommon stochastic radio propagation models assume

axioms leads to a simple model like that in the top dia-flat earth, and yet clearly the Earth is not flat. Even

gram in Figure9. Some papers assume Axioms 0—4 arad the short distances considered by most MANET re-

yet use a simple signal propagation model that expressearch, hills and buildings present obstacles that dramati-

some fading with distance; a threshold on signal strengtlly affect wireless signal propagation. Furthermore, the

determines reception. Some papers assume Axioms @#less nodes themselves are not always at ground level.

and add a reception probability to avoid Axiom 4. A local researcher using Berkeley “motes” for sensor-
In this paper we address the research community iretwork research notes the critical impact of elevation and

terested in ad hoc routing protocols and other distributgtbund-reflection effects:

protocols at the network layer. The network layer rests ) .

on the physical and medium-access (MAC) layers, and its N OUr current experiments we just bought 60

behavior is strongly influenced by their behavior. Indeed Plastic flower pots to raise the motes off the

many MANET research projects consider the physicaland 9round because we found that putting the motes

medium-access layer as a single abstraction, and use the ©n the ground drastically reduces their transmit

above axioms to model their combined behavior. We take "@nge (though not the receive range). Raising

this network-layer point of view through the remainder of ~ them a few inches makes a big difference.

the s_ectlon. Although we mention some of the individual Even where the ground is nearly flat, note that wireless

physical- and MAC-layer effects that influence the behayz o< 0 often used in multi-story buildings. Indeed two

ior seen at the network layer, we do not attempt to ide bdes may be found at exactly the same location, but

tify precisely which effects cause which behaviors; su different floors. (This condition is common among the

an exercise is beyond the scope of this paper. We NGAFi access points deployed on our campus.) Any Flat

show that the abf)vg axioms do not adequgtely dgscr %rth model would assume that they are in the same loca-
the network-layer’s view of the world. Then, in Section i

how how th fth . leads simulati ?n, and yet they are not. In some tall buildings, we found
we Snow now the use of INese axioms feads SIMulationg (g, impossible for a node on the fourth floor to hear a
results that differ radically from reality.

node in the basement, at the same location.
We need no data to “disprove” this axiom. Ultimately,
3.4 The reality of the axioms it is the burden of all MANET researchers to either a) use
a detailed and realistic terrain model, accounting for the
Unfortunately, real wireless network devices are neffects of terrain, or b) clearly condition their conclusions

nearly as simple as those considered by the axioms in fepeing valid only on flat, obstacle-free terrain.
preceding section. In this section, we use data collected

from the large MANET experiment described previous| 42 Axioms 1and 2
to examine the reality of radio behavior in an actual ad hotc™ X

3.4.1 AxiomO

a b~ wWwNPEFLO

network implementation. We demonstrate how this reality A radio’s transmission area is circular.
clearly differs from the behavior described by our axioms.
Before proceeding, it should be noted that the wireless All radios have equal range.

cards in our experiment operated at 2 Mb/s. This fixed rate
made it much easier to conduct the experiment, since wel'he real-world radio map of Figur@ makes it clear
did not need to track (and later model) automatic changhat the signal coverage area of a radio is far from simple.
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Not only is it neither circular nor convex, it often is nonin the figure. We use two counters for each bucket, one ac-
contiguous. counting for actual receptions, and the other for potential
We combine the above two intuitive axioms into a momeceptions (which includes actual receptions). Each time

precise, testable axiom that corresponds to the way theode sends a beacon, every other laptop is a potential
axiom often appears (implicitly) in MANET research. recipient. For every other laptop, therefore, we add one to
) o the potential-reception count for the bucket representing

Testable Axiom 1. The success of a transmission frorgyg gngles between the sender and the potential recipient.
one radio to another depends only on the distance t e can find a received beacon in the potential recipi-

between radios. ent's beacon log that matches the transmitted beacon, we

Although it is true that successful communication us@!SC @dd one to the actual-reception count for the appro-

ally becomes less likely with increasing distance, there 4/é@t€ count. The beacon reception ratio for a bucket is

many other factors: (1) All radios are not identical. althus the num_ber of act_ual receptions divided by t_he num-
ber of potential receptions. Each beacon-reception prob-

though in our experiment we used “identical” WiFi cards;~. = ! . X
there are reasonable applications where the radios or @1ty is calculated without regard to distance, and thus
resents the reception probability across all distances.

tennas vary from node to node. (2) Antennas are not p@p

fectly omnidirectional. Thus, the angle of the sender8 addition, for all of our axiom analyses, we considered

antenna, the angle of the receiver’s antenna, and their Rgly the western half of the field, and incremente_d the
ative locations all matter. (3) Background noise vari€QUnts only when both the sender and the (potential) re-
with time and location. Finally, (4) there are hills an§/Pient were in the western half. By considering only the

obstacles, including people, that block or reflect wirele4€Stern half, which is perfectly flat and does not include
signals (that is, Axiom O is false). the lower-altitude section, we eliminate the most obvious

From the point of view of the network layer thesée”ai” effects from our results. Overall, there were 40,894

physical-layer effects are compounded by MAC-layer dpeacons t_ransmitt_ed in the western half of the field, a_nd f_;lf-
fects, notably, that collisions due to transmissions froffif Matching and filtering, we had 275,176 laptop pairs, in
other nodes in the ad hoc network (or from third partig<1:250 of which the beacon was received, and in 153,926
outside the set of nodes forming the network) reduce fRWhich the beacon was not received.
transmission success in ways that are unrelated to disEigure 14 shows that the orientation of both antennas
tance. In this section, we use our experimental dataW@s a significant factor in beacon reception. Of course,
examine the effect of antenna angle, sender location, dAgre is a direct relationship between the antenna angles
sender identity on the probability distribution of beacoand whether the sender or receiver (human or laptop) is
reception over distance. between the two antennas. With a sender angle of 180,
We first demonstrate that the probability of a beacd@r example, the receiver is directly behind the sender, and
packet being received by nearby nodes depends strorifh the sender’s body and laptop serves as an obstruction
on the angle between sender and receiver antennastofthe signal. A different kind of antenna, extending above
our experiments, we had each student carry their “nodée level of the participants’ heads, would be needed to
a closed laptop, under their arm with the wireless integeparate the angle effects into two categories, effects due
face (an 802.11b device in PC-card format) sticking ot@ human or laptop obstruction, and effects due to the ir-
in front of them. By examining successive location offegularity of the radio coverage area.
servations for the node, we compute the orientation of theAlthough the western half of our test field was flat, we
antenna (wireless card) at the time it sent or receivealserved that the beacon-reception probability distribu-
beacon. Then, we compute two angles for each beaction varied in different areas. We subdivided the western
the angle between the sender’s antenna and the receivai§into four equal-sized quadrants (northwest, northeast,
location, and the angle between the receiver’s antenna andtheast, southwest), and computed a separate reception
the sender’s location. Figuls3illustrates the first of theseprobability distribution for beacons sent from each quad-
two angles, while the second is the same figure exceaht. Figurel5 shows that the distribution of beacon-
with the labels Source and Destination transposed. Figeeption probability was different for each quadrant, by
ure 14 shows how the beacon-reception probability varieabout 10-15 percent for each distance. We bucketed the
with both angles. laptop pairs according to the distance between the sender
To compute Figurd 4, we consider all possible valuesand the (intended) destination—the leftmost bar in the
of each of the two angles, each varying frosi80, 180). graph, for example, is the reception probability for laptop
We divide each range into buckets of 45 degrees, such thairs whose separation was in the raf@&5). Although
bucket O represents anglegin45), bucket 45 representsthere are many possible explanations for this quadrant-
angles in[45, 90), and so forth. Since we bucket both arbased variation, whether physical terrain, external noise,
gles, we obtain the two-dimensional set of buckets showntime-varying conditions, the difference between distri-
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Figure 13: The angle between the sending laptop’s an-

tenna (wireless card) and the destination laptop. Figure 14: The probability of beacon reception (over all

distances) as a function of the two angles, the angle be-
butions is enough to make it clear that the location of ghyeen the sender's antenna orientation gnd, the receivers
location, and the angle between the receiver’s antenna ori-

sender is not to be ignored. : ) , .
9 ptation and the sender’s location. In this plot, we divide

The beacon-reception probability in the western haa1 les into buckets of 45 d h 4 includ
of the field also varied according to the identity of th € angies Into DUCKELS o egrees each, and Include
ly data from the western half of the field. We also ex-

sender. Although all equipment used in every node wag
an identical model purchased in the same lot and cdf<>> the angles on the scale of -180 to 180, rather than O

figured identically, the distribution was different for eacH) 360, to better capture the inherent symmgtry. -180 anq
sender. Figurel6 shows the mean and standard devi&-s.O pOth Tefer to the case where the sendmg ar_1tenna 1S
tion of beacon-reception probability computed across Qﬂmtmg dlrgctly away fro'm' the mtendgd de; tm atlo.n, or,
sending nodes, for each bucket between 0 and 300 r%%r_respondlngly, the_ receiving antenna is pointing directly
ters. The buckets between 250 and 300 meters were neQW)?y from the sending node.

empty. Although the mean across nodes, depicted by

the boxes, is steadily decreasing, there also is substanile age area of a radio is not circular, it is difficult to
variation across nodes, depicted by the standard—deviaté%n define the “range” of a radio.

bars on each bucket. This variation cannot be explained

entirely by manufacturing variations within the antennas,

and likely includes terrain, noise and other factors, evét.3 Axiom 3

on our space of flat, open ground. It also is important to
note, however, that there are only 500-1000 data points
for each (laptop, destination bucket) pair. With this num-
ber of data points, the differences may not be statistically
significant. In particular, if a laptop is moving away froml_

most other laptops, we might cover only a small ortiones'[able Axiom 3: If a message frofrto 53 succeeds, an
peops, 9 y P immediate reply fron3 to A succeeds.

of the possible angles, leading to markedly different re-
sults than for other laptops. Overall, the effect of identity This wording adds a sense of time, since it is clearly

on transmission behavior bears further study with eXpei'ilﬁpossible (in most MANET technologies) for and B

ments specifically designed to test it. to transmit at the same time and result in a successful mes-
In other work, Ganesan et al. used a network of Berkgége and since and B may be moving, it is important
ley “motes” to measure signal strength of a mote’s ra

di8 consider symmetry over a brief time period so tHat
throughout a mesh of mote node&8HW*02].*? The re- 4,4 B have not moved apart.

sultm% C(_)ntcljlurdmap |s_not C,'trﬁlél,a:' nor clor:jvex(,j NOr €VeN there are many factors affecting symmetry, from the

monotonically decreasing with distance. Indeed, since tf}(‘}]nt of view of the network layer, including the phys-
12The Berkeley mote is currently the most common research platfolfll €ffects mentioned above (terrain, obsta-cl-es, relat!Ve

for real experiments with ad hoc sensor networks. antenna angles) as well as MAC-layer collisions. It is

If | can hear you, you can hear me (symmetry).

More precisely,
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Figure 15: The probability of beacon reception variggigure 17: The conditional probability of symmetric bea-
from quadrant to quadrant within the western half of tteon reception as it varied with the distance between two
field. nodes, again for the western half of the field.

0.8 .

ability was never much more than 0.8, most likely due to
{ MAC-layer collisions between beacons. Since this graph
} depends on the joint probability of a beacon arriving from
061 { 1 A to B and then another fromB to A, the lower reception
1 probability of higher distances leads to a lower joint prob-
o4r } 1 ability and a lower conditional probability. The abnormal
% ,,,, } bump in the 200 to 225 meter distance bucket is explained
}} % L 1 by the fact that the experimental field was roughly 225
‘ { """" - meters long on its north-south axis. We observed that it
0 25 50 75 100 125 150 175 200 225 250 275 300  Was acommon movement pattern to walk to the either the
Distance in Meters northern or southern terminus of the field, and then turn to

head toward another location. Therefore, there commonly

Figure 16: The average and standard deviation of recoﬁburred a situation where two nodes would be facing

g??hr;rgg%blhty across all nodes, again for the western h%ach other from opposite ends of the field. In this orien-

tation their reception probability was increased, bumping

up the overall probability observed for this range.
worth noting that the 802.11 MAC layer includes an inter- Figure18 shows how the conditional probability varied
nal acknowledgment feature, and a limited amount of r@eross all the nodes in the experiment. The probability
transmission attempts until successful acknowledgmengs consistently close to its mean 0.76, but did vary from
Thus, the network layer does not perceive a frame as snoee to node with a standard deviation of 0.029 (or 3.9%).
cessfully delivered unless symmetric reception was pd&imilarly, when calculated for each of the four quadrants
sible. Thus, for the purposes of this axiom, we chogeot shown), the probability also was consistently close to
to examine the broadcast beacons from our experimeritsimean 0.76, but did have a standard deviation of 0.033
dataset, since the 802.11 MAC has no internal acknodr 4.3%). As mentioned in the discussion of Axioms
edgment for broadcast frames. Since all of our nodes s&rand 2, there are many possible explanations for these
a beacon every three seconds, we were able to identifyiations, including physical terrain, external noise, and
symmetry as follows: whenever a nofereceived a bea- different movement patterns. Regardless of the specific
con from nodeAd, we checked to see wheth&'s next causes, the fact that this variation exists evidences the in-
beacon was also received by nadle validity of assuming equal symmetry among all nodes and

Figure17 shows the conditional probability of symmetiocations in a real environment.

ric beacon reception. Using the definition of symmetry In other work, Ganesan et alGKW*02] noted that
described above, we calculate each bar by dividing thbout 5—-15% of the links in their ad hoc sensor network
number of observed symmetric relationships by the totaére asymmetric. In that paper, an asymmetric link had
number of observed symmetignd asymmetric relation- a “good” link in one direction (with high probability of
ships for the given distance range. If the physical amgdessage reception) and a “bad” link in the other direction
MAC layer behavior was truly symmetric, this probabil¢with a low probability of message reception). [They do
ity would be 1.0 across all distances. In reality, the prohet have a name for a link with a “mediocre” link in either

Beacon Reception Probability

0.2 |

0
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different physical layer models can have dramatically
tr 1 different effect on the simulated performance of proto-
- cols [TMBO01], but lack of data prevented them from fur-

0.8 —— T q . . . . .
T T T e T ther validating simulation results against real-world ex-

2 o6l | periment results, which they left as future work. In the
¥ next section, we compare the simulation results with data
* o} i collected from a real-world experiment, and recommend

that simple models of radio propagation should be avoided
whenever comparing or verifying protocols, unless that

0 ‘ ‘ ‘ ‘ ‘ ‘ model is known to specifically reflect the target environ-
0 5 10 15 20 25 30 ment.
Node

0.2 |

Figure 18: The conditional probability of symmetric bea3.4.5 Axiom 5
con reception as it varied across individual nodes, again

for the western half of the field. Signal strength is a simple function of distance.

Rappaport Rap9§ notes that the average signal

direction.] strength should fade with distance according to a power-

Overall, it is clear that reception is far from symmetridaw model. While this is true, one should not underes-
Nonetheless, many researchers assume this axiom is tiifigate the variations in a real environment caused by ob-
and that all network links are bidirectional. Some do asgtruction, reflection, refraction, and scattering. In this sec-
knowledge that real links may be unidirectional, and ustion, we show that there is significant variation for individ-
ally discard those links so that the resulting network hggl transmissions.
only bidirectional links. In a network with mobile nodes ) ] .
or in a dynamic environment, however, link quality can Testable Axiom 5: We can find a good fit between a
vary frequently and rapidly, so a bidirectional link may simple function and a set of_(dlstance, signal strength)
become unidirectional at any time. It is best to develop observations.

protocols that do not assume symmetry. . : . . .
To examine this axiom, we consider only received bea-

i cons, and use the recipient’s signal log to obtain the signal
3.4.4  Axiom 4 strength associated with that beacon. More specifically,
If I can hear you at all, | can hear you perfectly.  the signal log actually contains per-second entries, where
each entry contains the single strength of the most recent
Testable Axiom 4. The reception probability distributiorpacket received from each laptop. If a data or routing
over distance exhibits a sharp cliff; that is, under someacket arrives immediately after a beacon, the signal-log
threshold distance (the “range”) the reception entry actually will contain the signal strength of that sec-
probability is 1 and beyond that threshold the receptiormnd packet. We do not check for this situation, since the
probability is 0. signal information for the second packet is just as valid
as the signal information for the beacon. It is best, how-

Looking back at Figurel6, we see that the beacon-ever, to view our signal values as those observed within

reception probability does mdeed_fade with the d'Stan8ﬁe second of beacon transmission, rather than the values
between the sender and the receiver, rather than remaills ) iated with the beacons themselves

ing near 1 out to some clearly defined “range” and thenAS a starting point, Figurd9 shows themeanbea-
dropping to zero. There is no visible “cliff.” The com- ’

5 del h hat f con signal strength observed during the experiment as a
monns-2 model, however, assumes that frame transmigs, .o of distance, as well as best-fit linear and power

sion is perfect, vyit_hin the range of a radio_, and as long &rves. The power curve is a good fit and validates Rap-
there are no collisions. Althougts-2 provides hooks to paport’s observation. When we turn our attention to the
add a bit-error-rate (BER) model, these hooks are unuag

. . . ignal strength of individual beacons, however, as shown
More sophisticated models do exist, particularly those

. . ﬁ'FiguresZO and 21, there clearly is no simple (non-
veloped byQualnet and the GloMoSim projééthat are probabilistic) function that will adequately predict the sig-

being used to explore how sophisticated channel mOdﬁ strength of an individual beacon based on distance
affect simulation outcomes. ne

. ) .alone.
IT‘?ka' examines tg?rggea ofdche?nnel mo?%lsdonhsm--rhe reason for this difficulty is clear: our environment,
ulation outcomes T 1, and also concluded t ataIthough simple, is full of obstacles and other terrain fea-

Bhttp://www.scalable-networks.com/pdf/mobihocpreso.pdf tures that attenuate or reflect the signal, and the cards
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125 375 625 87.5 1125 137.5 1625 187.5 2125 237.5  tion between signal strength and distance. We restrict the
Distance (meters) plot to beacons both sent and received on the western half
of the field, and show the mean signal strength as a heavy
Figure 19: Linear and power-curve fits for the mean sigotted line.
nal strength observed in the western half of the field. Note
that we show the signal strength as reported by our wil
less cards (which is dBm scaled to a positive range
adding 255), and we plot the mean value for each distar
bucket at the midpoint of that bucket.

Number of Data
Points

themselves do not necessarily radiate with equal pov
in all directions. In our case, the most common obst J
cles were the people and laptops themselves, and infi 45 ’
we initially expected to discover that the signal streng 170.5
was better behaved across a specific angle range (per
ure 14) than across all angles. Even for the seemingsignal strength
good case of both source and destination angles betw (@& *2%)
0 and 45 degrees (i.e., the sender and receiver roug...,
facing each other), we obtain a distribution (not shown) ) )
remarkably similar to Figur@0. Other angle ranges alsd 19ure 21: Same as Figu2 except that it shows the
show the same distribution as Figu@ numberof observed data points as a function of distance
Overall, noise-free, reflection-free, obstruction—fre@,nd signal strength. There is significant weight relatively
uniformly-radiating environments are simply not real, adg" away from the mean value.
signal strength of individual transmissions will never be a

simple function of distance. Researchers must be Calife simplifications they integrate into their radio models.

ful tp cons@e r.how sgnsmve .the|r S|_mulat|or1 results 4 the next section we quantitatively explore the impact of
to signal variations, since their algorithms will encounttﬁ[Iese axioms

significant variation once deployed.

177.5 =
212.5

Distance

Summary. These axioms are often considered to beh  Computer simulation results
reasonable estimate of how radios actually behave, and

therefore they are frequently used in simulation withoMfe demonstrate above that the axioms are untrue, but a
reservation. Our data, however, reveal the danger of skely question remains: what is the effect of these axioms
a belief. These assumptions do not just simplify realitgn the quality of simulation results? In this section, we
in many cases they distort it. An algorithm that performsegin by comparing the results of our outdoor experiment
well in the calm and predictable physical environment desth the results of a best-effort simulation model, and then
scribed by our axioms may perform quite differently in therogressively weaken the model by assuming some of the
inconsistent and highly variable physical environment thatioms. To better understand the observed effects, we
we observe in the real world. These results should comgigtn use a connectivity trace, derived from the outdoor
simulation designers to carefully consider and conditi@xperiment data, to more generally validate and probe the
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predictive power of our simplified models. We also exansection. We modified the real routing code only slightly
ine the role of two important parameters in generating the allow multiple instances of a routing protocol imple-
results. mentation to run simultaneously in the simulator’s single
With the exception of the experiment represented lgdress space.
Figure 26, we exclude STARA from our simulation runs We extended the simulator to read the node mobility
because of its excessive control traffic problems. This uand application-level data logs generated by the real ex-
usual behavior makes it a poor choice for most of our rgazgriment. In this way, we were able to reproduce the same
world versus simulation comparisons. We include it inetwork scenario in simulation as in the real experiment.
this figure alone to validate our claim from Section 2 thdb further increase the fidelity of our simulation, we fo-
detailed simulation would have revealed STARA's trafficused only on the 33 laptops that actually transmitted, re-
flow problems to its designers. As we expected, the dmived, and forwarded packets in the real experiments. To
tailed model came much closer than the two simpler magproduce a comparable traffic pattern in simulation, the
els in predicting the algorithm’s poor performari¢e. application traffic generator on each of the 33 active nodes
The purpose of this study is not to claim that our simwtill included the 7 crashed nodes as their potential packet
lator can accurately model the real network environmenestinations. Moreover, by directly running the routing
Instead, we show quantitatively the impact of the axionpsotocols and the beacon service program, the simulator
on the simulated behavior of routing protocols, and prgenerated the same types of logs as in the real experiment.
vide detailed insight into the varied robustness of thrddese conditions allow a direct comparison of results.
popular radio models. In the next few sections, we describe three simulation
We recognize that analytical or simulation research inodels with progressively unrealistic assumptions, and
wireless networking must work with an abstraction of réhen present results to show the impact.
ality, modeling the behavior of the wireless network be-
low the layer of interest. Unfortunately, overly simplistic

or malformed assumptions can lead to misleading or 612 Our best model

correct conclusions. We begin by comparing the results of the outdoor exper-
Our results provide a counter-example to the notion thafent with the simulation results obtained with our best
the arbitrary selection and generic configuration of amjgnal propagation model and a detailed 802.11 protocol
popular radio propagation model is sufficient for researghodel. The best signal propagation model is a stochastic
on ad hoc routing algorithms. We do not claim to validatehodel that captures radio signal attenuation as a combi-
or invalidate, the results of any other published study. Ination of two effects: small-scale fading and large-scale
deed, our point is that the burden is on the authors of pasling. Small-scale fading describes the rapid fluctua-
and future studies to a) clearly lay out the assumptiofign in the envelope of a transmitted radio signal over
made in their simulation model, b) demonstrate whethgrshort period of time or a small distance, and primar-
those assumptions are reasonable within the contexfigfis caused by multipath effects. Although small-scale
their study, and c) clearly identify any limitations in theading is in general hard to predict, wireless researchers
conclusions they draw. over the years have proposed several successful statisti-
cal models for small-scale fading, such as the Rayleigh
and Ricean distributions. Large-scale fading describes the
slowly varying signal-power level over a long time inter-
We used SWAN [YN'04], a simulator for wireless val or a large distance, and has two major contributing
ad hoc networks that provides an integrated, configuraigtors: distance path-loss and shadow fading. The dis-
and flexible environment for evaluating ad hoc routinignce path-loss models the average signal power loss as a
protocols, especially for large-scale network scenaridgnction of distance: the receiving signal strength is pro-
SWAN contains a detailed model of the IEEE 802.100rtional to the distance between the transmitter and the
wireless LAN protocol and a stochastic radio channggceiver raised to a given exponent. Both the free-space
model, both of which were used in this study. model and the two-ray ground reflection model mentioned
We used SWAN's direct-execution simulation tectgarlier can be classified as distance path-loss models. The
niques to execute within the simulator tbamerouting shadow fadlng describes the variations in the receiVing
code that was used in the experiments from the previdiignal power due to scattering; it can be modeled as a
zero-mean log-normal distribution. RappapdRap96g
1“The two simpler models double the message delivery ratio predicigrovides a detailed discussion of these and other models.

by the most detailed model. The even simpler analytical model used by, ; ; ; : - :
STARAS designers would have exaggerated this value even more. OneFC'r our simulation, given the “ght traffic used in the

good simulation run, using a good stochastic model, would have revedi€&! eXPerimenL we used a simplg SNR_ thres_hOId ap-
a drastic performance gap between their simple predictions and realiproach instead of a more computationally intensive BER

4.1 The wireless network simulator
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Experiment| Simulation| Error model, and the generic distance path-loss model with a

AODV 42.3% 46.8% | 10.5% given exponent—all used commonly by wireless network
APRL 17.5% 17.7% | 1.1% researchers—differ primarily in the maximum distance
ODMRP 62.6% 56.9% | -9.2% that a signal can travel. For example, if we assume that

the signal transmission power is 15 dBm and the receiv-
Table 2: Comparing message delivery ratios between rggf threshold is -81 dBm, the free-space model has a max-
experiment and simulation. imum range of 604 meters, the two-ray ground reflection

model a range of 251 meters, and the generic path-loss

model (with an exponent of 2.8) a range of only 97 me-

approach. Under heavier traffic, this choice might ha{@'s- Indeed, we found that the receiving range plays an
substantial impacf[MBO1]. For the propagation model important role in ad hoc routlng:' longer distance shorF—
we chose 2.8 as the distance path-loss exponent and 688 the data path and can drastically change the routing
as the shadow fading log normal standard. These valy@gintenance costyN*04].
which must be different for different types of terrain, pro- In this study, we chose to use the two-ray ground re-
duce signal propagation distances consistent with our dsction model since its signal travel distance matches ob-
servations from the real network. Finally, for the 802.13ervations from the real experiméfitThis weaker model
model, we chose parameters that match the settings of @fumes Axiom 4: “If | can hear you at all, | can hear
real wireless cards. you perfectly,” and specifically the testable axiom “The
Table2 shows the difference in the overall message d&ception probability distribution over distance exhibits a
livery ratio (MDR)—which is the total number of mesSharp cliff.” Without variations in the radio channel, all
sages received by the application layer divided by the tobignals travel the same distance, and successful reception
number of messages generated—between the real eerijeCt only to the state of interference at the receiver.
iment and the simulation. This propagation model pr¢1 other words, the signals can be received successfully
duced relatively good results: the relative errors in préith probability 1 as long as no collision occurs during
dicted MDR were within 10% for all three routing prof€ception.
tocols tested. We caution, however, that one cannot exFinally, we consider a third model that further weak-
pect consistent results when generalizing this stocha&its the simulator by assuming that the radio propagation
radio propagation model to deal with all network scenafhannel isperfect That is, if the distance between the
ios. After all, this model assumes some of the axioms Wgnder and the recipient is below a certain threshold, the
have identified, including flat earth, omni-directional resignal is received successfully with probability 1; other-
dio propagation, and symmetry. In situations where suéfise the signal is always lost. The perfect-channel model
assumptions are clearly mistaken—for example, in an figPresents an extreme case where the wireless network
ban area—we should expect the model to deviate furttiaedel introduces no packet loss from interference or col-
from reality. Moreover, the real routing experiment prdision, and the reception decision is based solely on dis-
vides a single reference point, and we do not have sufince. To simulate this effect, we bypassed the IEEE
cient data to assess the overall effectiveness of the md#f¢?-11 protocol layer within each node and replaced it
under different network conditions. with a simple protocol layer that calculates signal recep-
On the other hand, since the model produced good Hen based only on the transmission distance.
sults amenable to our particular outdoor experiment sce-
nario, we use it in this study as the baseline to quantijp/4 The results
the effect of the axioms on simulation studies. As we’
show, the axiom assumptions can significantly undermipgst, we look at the reception ratio of the beacon mes-

the validity of the simulation results. sages, which were periodically sent via broadcasts by the
beacon service program on each node. We calculate the
4.3 Simpler models reception ratio by inspecting the entries in the beacon

logs, just as we did for the real experiment. Fig@ie

Next we weakened our simulator by introducing a sinplots the beacon reception ratios during the execution of
pler signal propagation model. We used the distang® AODV routing protocol. The choice of routing pro-
path-loss component from the previous model, but digcol is unimportant in this study since we are comparing
abled the variations in the signal receiving power intro-
duced by the stochastic processes. Note that these VaEF.When we consider the full experiment field, which provides pos-
ations are a result of two distinct random distribution l_ble reception ranges of over 500 meters, we see almost no receptions

. yond 250 meters. The 251-meter range of the 2-ray model is computed
one for small-scale fading and the other for shadow faglm a well-known formula, using a fixed transmit power (15 dBm) and

ing. The free-space model, the two-ray ground reflectiantenna height (1.0 meter).
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Figure 23: Message delivery ratios for AODV.
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tances and underestimate them at longer distances. More
important for this study is the dramatic difference we saw
when signal power variations were not included in the
propagation model. The figure shows a sharp cliff in
the beacon reception ratio curve: the quality of the radiewer route invalidations, and more packets were able to
channel changed abruptly from relatively good receptifind routers to their intended destinations. The perfor-
to zero reception as soon as the distance threshold wsnce of the perfect-channel model remained insensitive
crossed. The phenomenon is more prominent for the peerthe traffic load since the model did not include collision
fect channel model. Since the model had no interfererayad interference calculations at the receiver, explaining
and collision effects, the reception ratio was 100% withithe divergence of the two simple models as the traffic load
the propagation range. increases. For ODMRP, we cannot make a clear distinc-
Next, we examine the effect of different simulatiofion between the performance of the best model and of the
models on the overall performance of the routing protdo-variation model. One possible cause is that ODMRP
cols. Figure23-25 show the message delivery ratios, fof a multicast algorithm and has a more stringent band-
the three ad hoc routing algorithms, as we varied the apptidth demand than the strictly unicast protocols. A route
cation traffic intensity by adjusting the average messaigj¢alidation in ODMRP triggers an aggressive route re-
inter-arrival time at each node. Note the logarithmic scaiéscovery process, and could cause significant packet loss
for thez-axes in the plots. The real experiment's result igder any of the models.
represented by a single point in each plot. In summary, the assumptions embedded inside the
Figures23-25show that the performance of routing alwireless network model have a great effect on the sim-
gorithms predicted by different simulation models variadation results. On the one hand, our best wireless net-
dramatically. For AODV and APRL, both simple modelsvork model assumes some of the axioms, yet the results
exaggerated the message delivery raignificantly In do not differ significantly from the real experiment results.
those models, the simulated wireless channel was m@h the other hand, one must be extremely careful when
more resilient to errors than the real network, since theassuming some of the axioms. If we had held our ex-
were no spatial or temporal fluctuations in signal powgreriment in an environment with more hills or obstacles,
Without variations, the transmissions had a much hightee simulation results would not have matched as well.
chance to be successfully received, and in turn, there weren in this relatively flat environment, our study shows

Figure 24: Message delivery ratios for APRL.
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ODMRP whether a packet from a mobile station could reach an-

80% = 5 T other mobile station, and then we used the radio propaga-
0% 1 tion models to determine the receiving power for the in-
2 60% - ’ 1 terference calculation. Comparison of models with mea-
gso% , “ 1 sured connectivity with those without give us a means of
2 40% refining a model's power—if a model is seen to require
E 30% | \ ) connectivity information to work well, it is not a robust
£ poms | o roal xperiment | model because the power of prediction comes from mea-
o3 | ;- best models “~.  surements. On the other hand if a model without mea-
4o, L_=_perfect channel ‘ ‘ sured connectivity information works about as well as
30 10 3 1 03 does the version with it, then the model itself contains ac-

Average packet inter-arrival time at each node (sec)

curate predictive power for connectivity.

Recognizing that message delivery ratio is not the only
metric of interest to routing protocol designers, we also
describe the performance of our six models in generating
that proper modeling of the lossy characteristics of the @ecurate hop count distributions.
dio channel has a significant impact on the routing pro-We then investigate the sensitivity of two important
tocol behaviors. For example, using our best model, oiaege-scale fading parameters: the distance path-loss ex-
can conclude from Figur23 and Figure25that ODMRP ponent, and the standard deviation value for shadow fad-
performed better than AODV with light traffic load (coning. The choice of these parameters is often arbitrary in
sistent with real experiment), but that their performansémulation studies, and we maintain that these values are
was comparable when the traffic was heavy. If we use tingportant determinents of the environment being simu-
model without variations, however, one might arrive at thated, and therefore should be selected and accounted for
opposite conclusion, that AODV performed consistentlyith care.
no worse than ODMRP. The ODMRP results are interest-The three models used in this further investigation—
ing by themselves, since the packet-delivery degradatigemeric propagation, two-ray ground reflection, and Friis
as the traffic load increases is more than might be expeche#®-space—are similar, but not exactly the same as the
for an algorithm designed to find redundant paths (througiodels used in quantifying the impact of the axioms.
the formation of appropriate forwarding groups). Bae hasQur generic propagation model is the same as the best
shown, however, that significant degradation can occurigdel from the axioms investigation. It uses the same
intermediate nodes move, paths to targets are lost, #ge-scale and small-scale fading models, and the same
route rediscovery competes with other trafBt [500]. In  parameter values for the distance path-loss exponent and
addition, the node density was high enough that each fefradow-fading standard deviation. Similarly, the two-ray
warding group could have included a significant fractiaground reflection model is the same as the first weakening
of the nodes, leading to many transmitted copies of eagithe axiom’s best model. It uses no shadow-fading or
data packet. An exploration of this issue is left for futuremall-scale fading, and is configured with the same path-

Figure 25: Message delivery ratios for ODMRP.

work. loss exponent as its axioms investigation equivalent.
The Friis free-space model, however, does differ from
4.5 Further investigation the perfect channel model used previously. The perfect

model had no implementation of an 802.11 protocol, and
In the previous sections, we investigate the impact of agstead used only a simple distance threshold to model
suming the axioms. We demonstrate that certain assurppeket reception. The Friis free-space model, on the other
tions dramatically affect the results, and in some cadend, retains an implementation of the 802.11 protocol,
even reverse the ranking of the algorithms being comHowing for collisions and interference. And though it
pared. Accordingly, we conclude that simulation desigassumes an ideal radio propagation condition—the signals
ers should be wary of what assumptions they make in cdravel in a vacuum space without obstacles—the power
structing their models. In this section we extend our inveess is proportional to the square of the distance between
tigation with a series of related simulation experiments.the transmitter and the receiver. Because the Friis model
Specifically, we combined three common radio propises signal strength to calculate collisions, this use of a
agation models with the connectivity trace derived fropath-loss exponent is a more complicated estimation of
the outdoor experiment beacon logs, leading to six diffeadio behavior than the simple distance threshold used in
ent radio propagation models in simulation: three usiitige perfect model.
the connectivity traces and the other three not. In the firstWe choose this slightly more complicated model for
three cases, we used the connectivity trace to determiinis further investigation because the previous sections
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Figure 26: Comparing the message delivery ratio froRigure 27: The hop-count histogram of AODV in real ex-
the real experiment with various radio propagation mogeriment and in simulation.
els. “With connectivity” means the connectivity trace was

used.
ing with the propagation models that do not use the con-

] ) nectivity trace. This result is not surprising: the connec-
make it clear that the perfect model, without any compegity trace, to some degree, can represent the peculiar ra-
sation for collisions or mterference, grossly overestlmatﬁﬁ, propagation scenario of the test environment. In our
protocol performance in all cases. The use of the Frigneriment, there were significant elevation changes in
free-space model in this experiment provides more int@fe test field that led to the obstruction of radio signals
esting results by allowing us to compare three more fgstween laptops that were close by in distance. With-
lated approaches to estimating radio reception power oyg connectivity traces, the propagation model assumes
time and distance. an omni-directional path loss dependent only on the dis-

It should also be noted that to further increase the siance, which resulted in a more connected network (fewer
ilarity between the simulated environment and the re{%ps) and therefore better delivery ratio.
conditions, we modified th_e applicati_on f[raffic generator oy course, the message delivery ratio does not reflect
to read the outdoor experiment application log and g&f{x entire execution environment of the routing algorithm.
erate the same packets as in the real experiment. W8 the routing event logs, we collected statistics related
were unable to implement this fgature in the axiom exp&g each particular routing strategy. Figu@@ shows a
iments because we ran those simulations at various rzﬂ%?ogram of the number of hops that a data packet tra-
of packet generation. versed in AODV, before it either reached its destination or

dropped along the path. For example, a hop count of zero

Results. We first examine the message delivery rationeans that the packet was dropped at the source node;
Figure 26 shows the message delivery ratio from the realhop count of one means the packet went one hop: ei-
experiment and the simulation runs with six radio propther the destination was its neighbor or the packet failed
gation models (three of which used the connectivity trate reach the next hop. The figure shows the fraction of
derived from the real experiment to determine the reachhbe data packets that traveled in the given number of hops.
bility of the signals). Each simulation result is an averades above, the free-space and two-ray models resulted in
of five runs; the variance is insignificant and therefore nfewer hops by exaggerating the transmission range. We
shown. also see that the connectivity trace was helpful in predict-

These results verify many of the conclusions reachi the hop counts, which confirms that the problem with
in the previous simulation experiment. For example, thiee free-space and two-ray models using the connectivity
generic propagation model, with typical parameters, dface was that they did not consider packet losses due to
fers an acceptable prediction of the routing algorithm péhe variations in receiving signal power.
formance. Different propagation models predict vastly Finally, we take a look at the sensitivity of certain sim-
different protocol behaviors, and these differences arkation parameters in the generic propagation model. The
non-uniform across the algorithms tested. For three algogonent for the distance path loss and the standard de-
rithms, the two-ray ground reflection and free-space modation in log-normal distribution for the shadow fading
els both exaggerate the PDR, whereas ODMRP perfare heavily dependent on the environment under investi-
mance was underestimated. gation. In the next experiment, we ran a simulation with

More important is what we observe by comparing titbe same number of mobile stations and with the same
models with connectivity traces to those without. Theaffic load as in the real experiment. Figu28 shows
propagation models that used the connectivity trace AODV performance in packet delivery ratio, as we varied
general lower the message delivery ratio, when comptre path-loss exponent from 2 to 4 and the shadow log-
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wireless model that reflects a real-world scenario for
studying the performance of ad hoc routing algorithms. In
contrast to earlier studie3BTGO01], we found that using

a simple stochastic radio propagation model with param-
eters typical to the outdoor environment can produce ac-
ceptable results. We must recognize, however, the results
are sensitive to these parameters. It is for this reason we
caution that the conclusions drawn from simulation stud-
ies using simple propagation models should apply only to
the environment they represent. The free-space model and
e toss Exponent the two-ray model, which exaggerate the radio transmis-
sion range and ignore the variations in the receiving signal
%ower, can largely misrepresent the network conditions.

Packet Delivery Ratio

Figure 28: Sensitivity of the AODV protocol performanc
to the parameters of the large-scale fading model.

normal standard deviation from 0 to 12 dB—the rangé Conclusion

suggested byRap9§ for radio modeling out-of-doors. . .
The AODV behavior was more sensitive to the patrhr—] recent years, dozens of Mobicom and Mobihoc papers

loss exponent than to the shadow standard deviation. ﬁ\%\(e presented simulation results for mobile ad hoc net-

is, the signal propagation distance had a stronger eﬁg/&rks. The great majority of these papers rely on overly

on the algorithm’s performance. A shorter transmissianp“Stic. assumptions of how radios work. Both widely
d P sed radio models, “flat earth” amg-2 “802.11" mod-

range means packets must travel through more hops body the followi  of axi “th Id is tw
longer routes) before reaching its destination, and the =, eémbody the o_o,wmg set oraxioms. the world 1S IWo
mensional; a radio’s transmission area is roughly circu-

fore has a higher probability to be dropped. A larger Il radios h | s h
shadow standard deviation caused the links to be mdta &' 'aclos have equalrange, It can hear you, you can
gar me; if | can hear you at all, | can hear you perfectly;

unstable, but the effect varied. On the one hand, wh . . - . ;
signal strength is a simple function of distance.

the path-loss exponent was small, the signals had a | hers h dth | radi dadh K

transmission range, so the small variation in the receivinP t ersh ave note tlat r?k? ratr:os an la oc(:jnletwords

signal strength did not have a significant effect on routin € much more compiex than the sSimple models use
most researcher®JL 03, and that these complexities

causing only infrequent link breakage. On the other hand, L . :
when the exponent was large, most nodes were disc AYe aS|gn|f|can_t Impact 0n+the behaylor of MANET pro-
nected. A variation in the receiving signal power helpeI cols anq algorlthmsC{KV\( 02]. In this study, we val-

te the importance of this problem, and present results

establish some routes that were impossible if not for t q dati o hel h ¢
signal power fluctuation. Between the extremes, a largi|" rfécommendations o help researchers generate more
eliable simulations.

variation in the link quality generally caused more trans* h Its of d dl |
mission failures, and therefore resulted in slightly lower We present the results of an unprecedented large-scale

message delivery ratio outdoor experiment comparing in detail the performance

The critical implication of this sensitivity study is thatpf four different ad hoc algorithms. We then enumerate

we cannot just grab a set of large-scale fading parametgi’?,set of common assumptions used in MANET research,

use them, and expect meaningful results for any spec d use data from our real-vyorld experimen'F to strongly
environment of interest. On the one hand, pre-simulatiSRn,tradl'Ct_ these axioms. hFlnaIIy, we dr(]asc_:nbe a S?”es
empirical work to estimate path-loss characteristics mig‘?’(ts'rnu ar:lon expenmentds t Ia(; quantify the |fmpéa.ct 0 351
be called for, if the point of the experiment is to quantif?um'ngt ese axioms and validate a group of radio models

behavior in a given environment. Alternatively, one macgpmmonly used in ad hoc network research.

require more complex radio models (such as ray tracin )The results cast doubt on published simulation results

that include complex explicit representations of the d __atimplicitly rely on our @dentified as_sum_ptions, and pro-
main of interest. On the other hand, if the objective }gde guidance for designing and configuring more reliable

to compare protocols, knowledge that the generic propamulation models for use in future studies.

gation model is good lets us compare protocols usingag conclude with a series of recommendations,

range of path-loss values. While this does goantify  for the MANET research community:
behavior, it may allow us to makgualitativeconclusions

about the protocols over a range of environments. 1. Choose your target environment carefully, clearly list
To summarize, this further investigation reaffirms our your assumptions about that environment, choose sim-
earlier conclusion that it is critical to choose a proper ulation models and conditions that match those as-
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. Include some fraction of asymmetric links (e.g., where

. Recognize that connectivity is easily overestimated in

sumptions, and report the results of the simulation 4n Support the development of standard terrain and mo-
the context of those assumptions and conditions. bility models, and formats for importing real terrain

. Use a realistic stochastic model when verifying a pro- data or mobility traces into the simulation.

tocol, or comparing a prptocol to existing protocols_:_tfor protocol designers:

Furthermore, any simulation should explore a range o

model parameters since the effect of these parameter€onsider carefully your assumptions of lower layers.
is not uniform across different protocols. Simple mod- In our experimental results, we found that the success
els are still useful for the initial exploration of a broad of a transmission between radios depends on many fac-
range of design options, due to their efficiency. tors (ground cover, antenna angles, human and phys-

. Consider three-dimensional terrain, with moderate ical obstructions, background noise, and competition

hills and valleys, and corresponding radio propagation from other nodes), most of which cannot be accurately
effects. It would be helpful if the community agreed modeled, predicted or detected at the speed necessary

on a few standard terrains for comparison purposes. to make per-packet routing decisions. A routing proto-
col that relies on an acknowledgement quickly mak-

ing it from the target to the source over the reverse
path, that assumes that beacons or other broadcast traf-
fic can be reliably received by most or all transmission-
range neighbors, or that uses an instantaneous measure
of link quality to make significant future decisions,

A can hearB but not vice versa) and some time-
varying fluctuations in whether’s packets can be
received byB or not. Here thens-2 “shadowing”
model may prove a good starting point.

. Use real data as input to simulators, where possible.js jikely to function significantly differently outdoors

For example, using our data as a static “snapshot” of ainan under simulation or indoor tests.
realistic ad hoc wireless network with significant link

asymmetries, packet loss, elevated nodes with h%h
fan-in, and so forth, researchers could verify whether
their protocols form networks as expected, even in the
absence of mobility. The dataset also may be helpful in
the development of new, more realistic radio models.

Develop protocols that adapt to environmental condi-
tions. In our simulation results, we found that the rel-
ative performance of two algorithms (such as AODV
and ODMRP) can change significantly, and even re-
verse, as simulation assumptions or model parameters
change. Although some assumptions may not signif-
X X . | icantly affect the agreement between the experimen-
simulation. Even the most realistic models used in 1 anq simulation results, others may introduce radi-
our experiments overestimated networ!< connectl\{lty aS cal disagreement. For similar reasons, a routing proto-
compa_lred to our real-world res_ults_. This observapon 'S col tested indoors may work very differently outdoors.
especially important when validating or comparing a pegigners should consider developing protocols that
protocol that depends on a certain minimum threshold make few assumptions about their environment, or are

of network connections to perform effectively. able to adapt automatically to different environmental

. Avoid simple models, such as free-space or two-ray conditions.

tgroulnfd reflﬁp tLOE’ when v?l_ldatm% ?r comparlngt] afp;g—_ Explore the costs and benefits of control traffic. Both
0CO1 for which hop count 1S a vital component ot its -, experimental and simulation results hint that there
performance. These models significantly exaggerate

L. is a tension between the control traffic needed to iden-
transmission range, and subsequently lower hop Counts[ify and use redundant paths and the interference that
to an unrealistic level.

this extra traffic introduces when the ad hoc routing

...for simulation and model designers: algorithm is trying to react to a change in node topol-

1.

ogy. The importance of reducing interference versus
Allow prOtOCOI deSignerS to run the same code in the |dent|fy|ng redundant paths (or reacting qu|ck|y to a
simulator as they do in a real systeblYN*04], mak-  path loss) might appear significantly different in real
ing it easier to compare experimental and simulation experiments than under simple simulations, and pro-
results. tocol designers must consider carefully whether extra

. Develop a simulation infrastructure that encourages thecontrol traffic is worth the interference price.

exploration of a range of model parameters. 4. Use detailed simulation as a tool to aid the proto-

. Develop a range of propagation models that suit differ- col design process. Modeling the effects of collisions

ent environments, and clearly define the assumptionsand highly variant transmission strengths may provide
underlying each model. Models encompassing both some guidance for tailoring your protocol design to

physical and data-link layer need to be especially care-more effectively avoid or adapt to destabilizing envi-

ful. ronmental conditions.
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Availability. We will make our simulator and our[EROOQ]
dataset available to the research community upon com-
pletion of a conference version of this paper. The dataset,
including the actual position and connectivity measure-
ments, would be valuable as input to future simula-

tion experiments. The simulator contains several radio-
propagation models.
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