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Abstract

Because it is difficult and costly to conduct real-world mo-
bile ad hoc network experiments, researchers commonly
rely on computer simulation to evaluate their routing pro-
tocols. However, simulation is far from perfect. A grow-
ing number of studies indicate that simulated results can
be dramatically affected by several sensitive simulation
parameters. It is also commonly noted that most simu-
lation models make simplifying assumptions about radio
behavior. This situation casts doubt on the reliability and
applicability of many ad hoc network simulation results.

In this study, we begin with a large outdoor routing ex-
periment testing the performance of four popular ad hoc
algorithms (AODV, APRL, ODMRP, and STARA). We
present a detailed comparative analysis of these four im-
plementations. Then, using the outdoor results as a base-
line of reality, we disprove a set of common assump-
tions used in simulation design, and quantify the impact
of these assumptions on simulated results. We also more
specifically validate a group of popular radio models with
our real-world data, and explore the sensitivity of various
simulation parameters in predicting accurate results. We
close with a series of specific recommendations for simu-
lation and ad hoc routing protocol designers.

1 Introduction

It is difficult to perform an accurate evaluation of a mo-
bile ad hoc network (MANET). In a perfect world, ad hoc
network protocols would always be validated with exten-
sive real world experimentation. The best way to predict
the behavior of a network is to deploy it in a real environ-
ment, and then observe what happens. For obvious rea-
sons, however, such experimentation is rarely done. As
Zhang et al. point out, “running MANET systems in a
non-trivial size is costly due to high complexity, required
hardware resources, and inability [to test] a wide range of

mobility scenarios” [ZL02]. This difficulty is supported
by our own anecdotal experience. Conducting the outdoor
experiment reported in this study required over two years
of preparation by a team of more than ten researchers and
student interns. In fact, Zhang et al. report that their lit-
erature search uncovered only a “few” real world systems
that haveeverbeen implemented, and none that have been
tried on a scale beyond a dozen nodes [ZL02]. Our review
of the MANET literature, two years later, confirms this
observation.

Because of this difficulty of running real world experi-
ments, it is clear that, at least for now, computer simula-
tion will remain the standard for ad hoc network evalua-
tion. However, this reliance on simulation demands in re-
turn a careful scrutiny of common simulation approaches.
For simulation to be used as a meaningful evaluation tech-
nique, there must be a concerted effort to understand the
models being used—including their specific characteris-
tics, and their relative validity. This conclusion is sup-
ported by an increasing body of research that demon-
strates that the outcome of wireless network simulation
is quite sensitive to the underlying models. For example,
in an experiment conducted by Takai et al. [TMB01], it
is shown that altering parameters in commonly used ra-
dio models has a non-uniform effect on ad hoc protocol
behavior, sometimes even reversing the relative ranking
among protocols tested in the same scenario. The simu-
lation results reported in this study similarly demonstrate
dramatic changes in outcomes when different radio mod-
els are used (see Section 4.5). And a recent article inIEEE
Communicationswarns that “An opinion is spreading that
one cannot rely on the majority of the published results
on performance evaluation studies of telecommunication
networks based on stochastic simulation, since they lack
credibility” [PJL02]. It then proceeds to survey 2200 pub-
lished network simulation results to point out systemic
flaws.

We of course do not suggest that there is oneright an-
swer to the question of simulation validity. Accordingly,
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we do not attempt to identify any oneright model that al-
ways performs best. But we do, however, argue that simu-
lation designers should explicitly address the assumptions
made in their models, and the influence that these assump-
tions may have on simulation results. We believe that
this approach will allow the MANET community to confi-
dently find relevance for simulation outcomes beyond the
specific simulator configuration in which a particular ex-
periment was run.

With this in mind, we identify several specific ques-
tions that simulation designers should consider and strive
to answer to ensure that their results are as meaningful as
possible:

• What assumptions are made by the radio propagation
model?

• How realistic are these assumptions?

• What is the effect of these assumptions on the re-
sults?

• Has the radio model been validated with experimen-
tal data, and if so, how does it perform relative to
reality? For example, does the model tend to pre-
dict a higher rate of network connectivity than what
is observed under experimental conditions? Does it
exaggerate the maximum range of the network’s ra-
dios? What is the significance of these variations for
understanding the simulation results?

• What simulation parameters are used? How sensitive
are the results to changes in these parameters? And
how do the values used constrain the applicability of
the results?

In this study, we detail the necessity of these questions,
and use real experimental data combined with a wireless
network simulator to explore answers as they apply to a
group of commonly used radio propagation models. More
specifically, we a) describe in detail the implementation
and results of a large outdoor MANET routing experi-
ment; b) identify the extent to which most ad hoc network
researchers make common simplifying assumptions about
the radio model used in simulation; c) use experimental
data to quantitatively demonstrate that these assumptions
are far from realistic; d) explore how these assumptions
may lead to misleading results in ad hoc network simula-
tion; e) validate the predictive power of our selected mod-
els against an experimental baseline; f) explore the role
of important parameters in simulation results; and g) list
recommendations for the designers of protocols, models,
and simulators.

The results described in this study span over two years
of work, including one published paper [LYN+04], one

technical report [KNE03] (with a revision currently un-
der conference submission), and another conference pa-
per in preparation that describes the large-scale outdoor
MANET routing experiment, and analyzes the perfor-
mance data. This thesis is the first complete synthesis
of these various experiments into one comprehensive ex-
amination of accuracy in ad hoc network simulation. We
hope that our use of real experimental results to ground
our simulation analysis will make this work particularly
useful for simulation designers, and provide an important
contribution to the growing field of ad hoc networking re-
search.

2 Outdoor routing experiment

As mentioned above, few MANET researchers conduct
real-world experiments. The cost and complexity are pro-
hibitive for most projects. In this section, however, we
throw caution to the wind, and join a team that is up to the
challenge of testing four popular ad hoc routing protocols
in a dynamic outdoor environment. Specifically, research
engineer Robert Gray organized a real-world routing ex-
periment as part of a larger multi-disciplinary university
research initiative led by Dartmouth Professor George Cy-
benko.1 Gray worked on the scenario design with Susan
McGrath, Eileen Entin and Lisa Shay, and the algorithms
were implemented by Aaron Fiske, Chris Masone, Nikita
Dubrovsky, and Michael DeRosa. Our role in this project
is to gather and organize the data produced by the experi-
ment and then provide a detailed comparative analysis of
the results.

This description of real network behavior, in addition to
being a stand-alone contribution to the research commu-
nity, also forms an empirical baseline that aids our subse-
quent validation of ad hoc network simulation.

2.1 The algorithms

The outdoor experiment tests four algorithms. APRL,
which stands for Any-Path Routing without Loops, is
a proactive distance-vector routing protocol [KK98].
Rather than using sequence numbers, APRL uses ping
messages before establishing new routes to guarantee
loop-free operation. AODV, or Ad-hoc On-Demand Vec-
tor, is an on-demand routing algorithm—routes are cre-
ated as needed at connection establishment and main-
tained thereafter to deal with link breakage [PR99].
ODMRP stands for the On-Demand Multicast Routing
Protocol [LGC02]. For each multicast group, ODMRP
maintains a mesh, instead of a tree, for alternate and re-
dundant routes. ODMRP does not depend on another uni-
cast routing protocol and, in fact, can be used for uni-

1http://actcomm.dartmouth.edu
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cast routing. STARA, the System and Traffic Dependent
Adaptive Routing Algorithm, is based on shortest-path
routing [GK97]. It uses mean transmission delay instead
of hop count as the distance measure.

2.2 The experiment

The outdoor routing experiment took place on a rectan-
gular athletic field measuring approximately 225 (north-
south) by 365 (east-west) meters. This field can be
roughly divided into four flat, equal-sized sections, three
of which are at the same altitude, and one of which is ap-
proximately four to six meters lower. There was a short,
steep slope between the upper and lower sections.

Each Linux laptop2 had a wireless card3 operating in
peer-to-peer mode at 2 Mb/s. This fixed rate made it
much easier to conduct the experiment, since it obviated
the need to track (and later model) automatic changes to
each card’s transmission rate.

To reduce interference from the campus wireless net-
work, the experiment was conducted on a field physically
distant from campus, and the cards were configured to
use wireless channel 9 for maximum separation from the
standard channels (1, 6 and 11). In addition, each lap-
top collected signal-strength statistics for each received
packet.4 Finally, each laptop had a Garmin eTrex GPS
unit attached via the serial port. These GPS units did not
have differential GPS capabilities, but were accurate to
within thirty feet during the experiment.

Each laptop recorded its current position (latitude, lon-
gitude and altitude) once per second, synchronizing its
clock with the GPS clock to provide sub-second, albeit
not millisecond, time synchronization. Every three sec-
onds, thebeacon service programon each laptopbroad-
casta beacon packet containing the current laptop posi-
tion (as well as the last known positions of the other lap-
tops). Each laptop that received such a beacon updated
its internal position table, and sent aunicast acknowledg-
mentto the beacon sender via UDP. Each laptop recorded
all incoming and outgoing beacons and acknowledgments
in another log file. The beacons provide a continuous pic-
ture of network connectivity, and, fortunately, also repre-
sent network traffic that would be exchanged in many real

2A Gateway Solo 9300 running Linux kernel version 2.2.19 with
PCMCIA Card Manager version 3.2.4.

3We used a Lucent (Orinoco) Wavelan Turbo Gold 802.11b. Al-
though these cards can transmit at different bit rates and can auto-adjust
this bit rate depending on the observed signal-to-noise ratio, we used an
ad hoc mode in which the transmission rate was fixed at 2 Mb/s. Specif-
ically we used firmware version 4.32 and the proprietary ad hoc “demo”
mode originally developed by Lucent. Although the demo mode has
been deprecated in favor of the IEEE 802.11b defined IBSS, we used the
Lucent proprietary mode to ensure consistency with a series of ad hoc
routing experiments of which this outdoor experiment was the culminat-
ing event.

4We used thewvlan cs , rather than theorinoco cs , driver.

MANET applications. Finally, every second each laptop
queried the wireless driver to obtain the signal strength of
the most recent packetreceivedfrom every other laptop,
and recorded this signal strength information in a third
log.5 Querying every second for all signal strengths was
much more efficient than querying for individual signal
strengths after each received packet.

These three logs provide all the data that we need to
compare the performance of the four routing algorithms.
The laptops automatically ran each routing algorithm for
15 minutes, generating random UDP data traffic for thir-
teen out of the fifteen minutes, and pausing for two min-
utes between each algorithm to handle cleanup and setup
chores. The traffic-generation parameters were set to pro-
duce the traffic volumes observed in previously explored
prototype situational-awareness applications [Gra00], ap-
proximately 423 outgoing bytes (including UDP, IP and
Ethernet headers) per laptop per second, a relatively mod-
est traffic volume. The routing algorithms produce addi-
tional traffic to discover or maintain routing information.
Note that each transmitted data packet was destined for
only a single recipient, reducing ODMRP to the unicast
case.

Finally, the laptops moved continuously. At the start of
the experiment, the participants were divided into equal-
sized groups of ten each, each participant given a laptop,
and each group instructed to randomly disburse in one of
the four sections of the field (three upper and one lower).
The participants then walked continuously, always pick-
ing a section different than the one in which they were
currently located, picking a random position within that
section, walking to that position in a straight line, and then
repeating. This approach was chosen since it was sim-
ple, but still provided continuous movement to which the
routing algorithms could react, as well as similar spatial
distributions across each algorithm.

During the experiment, seven laptops generated no net-
work traffic due to hardware and configuration issues, and
an eighth laptop generated the position beacons only for
the first half of the experiment. We use the data from the
remaining thirty-two laptops, although when we simulate
later, we use thirty-three laptops since only seven laptops
generated no network traffic at all. In addition, STARA
generated an overwhelming amount of control traffic, and
though we exclude the STARA portion of the experiment
from later analysis of radio behavior, we still present its
data in the outdoor results sections that follow. The reason
we exclude it later is because its unusual behavior makes
it a poor reference point for the specific task of validating
simulation results.

5For readers familiar with Linux wireless services, note that we in-
creased the IWSPY limit from 8 to 64 nodes, so that we could capture
signal-strength information for the full set of laptops.
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2.3 The results

To evaluate the relative performance of these algorithms
we use the following four metrics:message delivery ra-
tio, communication efficiency, hop count, and end-to-end
latency. Combined, these measures provide a good un-
derstanding of the various factors involved in the different
observed behaviors. In the sections that follow, we give a
detailed definition of each metric, and compare the results
for each algorithm.

Before proceeding, there are several important terms
used in our analysis that must first be defined:

• A messageis a group of dummy bytes produced by
a node’s traffic generator for intended transportation
to a randomly-selected destination. All of our gen-
erated messages are small enough to fit into a single
data packet.6

• A data packetis any transmitted packet containing
message data. Therefore, everymessagerequires the
transmission of at least onedata packetto reach its
destination. A message also can generate more than
one data packet, depending on the route length, and
the delivery strategy of the algorithm. It also is pos-
sible for a message to generatenodata packets, if the
sending node fails to identify any active route toward
the message’s destination.

• A control packetis any transmitted packet that does
not contain message data. Control packets are the
means by which most algorithms communicate rout-
ing information with nearby nodes.

2.3.1 Message delivery ratio

We calculate the message delivery ratio for each algorithm
by dividing the total number of messages received at their
intended destination by the total number of messages gen-
erated. This metric measures each algorithm’s overall suc-
cess in providing reliable communication.

We note that this metric is typically referred to aspacket
delivery ratioin similar examinations of routing protocol
behavior. In this study, however, we substitute the word
messagefor packet to keep our terminology consistent
with the precise definitions provided above.

Figure1 shows the message delivery ratio for each of
the four algorithms. A striking result from this compari-
son is the dominance of ODMRP. This high delivery rate
is best explained by ODMRP’s aggressive flooding ap-
proach to route discovery. Instead of using control packets
to discover message routes, this algorithm floods the net-
work with data packets. This greatly increases the chance
that a message will reach its intended destination.

6Each message was approximately 1200 bytes in size, including all
relevant headers.
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Figure 1: Message delivery ratio comparison of all four
algorithms.

We also note that AODV performs better than APRL.
This result indicates the advantage of a reactive approach
to route discovery in our mobile scenario. If the nodes
in our experiment had been more static, or if the physi-
cal environment had otherwise provided less opportunity
for link breakages, it is possible that we would see less
of a gap between AODV’s and APRL’s delivery ratios.
In addition, APRL does not minimize a hop count met-
ric when choosing a route. Subsequently, its average hop
count (shown in Section 2.3.3 below) for successful mes-
sage transmissions is larger than what we see for AODV.
This use of longer routes opens up more opportunity for
dropped packets, and therefore it also may have lowered
APRL’s performance.

STARA’s message delivery ratio is the worst of the
group. We attribute the algorithm’s poor performance in
our experiment to an excessive amount of control traffic.
Its continual probing of the network created overwhelm-
ing congestion. Accordingly, we recognize that our imple-
mentation of STARA needs additional flow restrictions on
the control traffic to constrain the unchecked propagation
of control packets. Piyush Gupta proposes one possible
solution to this excessive traffic problem by noting that
multiple copies of an identical control packet arriving at
a common node could be condensed into a fewer number
of packets before being rebroadcast [Gup00]. Gupta also
notes that “extensive simulation study and protocol de-
velopment [are] needed to make STARA a viable routing
protocol” [Gup00]. We agree, adding that our experience
with STARA reinforces the importance of using detailed
stochastic simulation to help validate and enhance routing
protocols during the design phase.

2.3.2 Communication efficiency

Figure2 shows, for each algorithm, the average number of
data packets transmitted for each generated message. We
derive this number by dividing the total number of trans-
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Figure 2: Average number of data packets transmitted for
each generated message.

mitted data packets by the total number of generated mes-
sages. This metric approximates each algorithm’s data
transportation efficiency.

ODMRP once again dominates the plot. This is not un-
expected, as ODMRP floods the network with data pack-
ets when trying to locate a route. Accordingly, the number
of data packet transmitted for each message in ODMRP is
significant. If the size of the messages being transmitted
is large, then the effect of this data packet load on avail-
able bandwidth would be dramatic. In our experiment,
however, the generated traffic size was relatively modest,
approximately 423 outgoing bytes per laptop per second,
allowing ODMRP to avoid excessive congestion. If, on
the other hand, the traffic had been concentrated on fewer
destinations, or if the network had been more static, we
would observe fewer ODMRP data packets as it would
not need to flood the network as often.

AODV transmitted 1.32 data packets per message,
while APRL transmitted only .90. The difference between
these two values, though small in magnitude, is notable.
As shown below in Section 2.3.3, APRL’s average hop
count for successfully received messages is larger than
AODV. Therefore, if both algorithms had equally accu-
rate routing information, APRL’s data packets per mes-
sage value should be larger than AODV, as its routes tend
to require more hops. This is not, however, what we ob-
serve. APRL’s smaller value of data packets per message
indicates a lack of quality routing information. As we ex-
plore in more detail in the next section, APRL had a large
number of messages dropped at their source (without gen-
erating any data packets), because an active route could
not be identified.

STARA transmitted the fewest data packets, which we
attribute to the packet drops due to the congestion created
by the algorithms control traffic.

Figure3 shows, for each algorithm, the average num-
ber of control packets transmitted for each generated mes-
sage. We derive this number by dividing the total number
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Figure 3: Average number of control packets transmitted
for each generated message.

Packets Per Message
AODV 7.50
APRL 33.30

ODMRP 45.59
STARA 150.67

Table 1: The average number of packets transmitted (data
packets and control packets) for each generated message.

of transmitted control packets by the total number of gen-
erated messages. This allows us to compare each algo-
rithm’s control traffic efficiency.

STARA clearly produced the most control traffic. It
generated, on average, 150 control packets for each mes-
sage. This overwhelming result evidences the excessive
control traffic that we cite as causing STARA’s poor per-
formance in our experiment.

APRL generated the next largest amount of control traf-
fic, with 32 control packets, on average, for each message.
AODV was the most efficient, generating only six con-
trol packets, on average, for each message. These results
demonstrate that in our scenario, with light traffic and dy-
namic connectivity, one of the costs of APRL’s periodic
proactive route discovery, as oppose to AODV’s reactive
approach, is a substantial increase in control traffic.

It is difficult to find comparative significance for the
ODMRP control traffic result, as control and data packets
are not clearly distinguished for this algorithm. In our ex-
periment, we count packets not containing message data
as control packets. For ODMRP this would include only
the reply traffic generated in response to the algorithm’s
flooding of the network with data packets, even though, in
many ways, the flooded data packets are acting the role
of control packets. A more meaningful comparison of
ODMRP’s communication efficiency can be found with
thetotal packets per messagevalues that we present next.

Table1 shows, for each algorithm, the average number
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of packets transmitted for each generated message. These
values are calculated by adding the total number of con-
trol packets and data packets transmitted, and then divid-
ing this sum by the total number of generated messages.
This measure approximates the overall communication ef-
ficiency of each algorithm.

AODV is clearly the most efficient, requiring, on av-
erage, only 7.5 packets for each message. Surprisingly,
ODMRP does not fare much worse than APRL. One
might assume that ODMRP’s aggressive network flooding
approach would lead to a more significant increase in traf-
fic costs as compared to APRL’s periodic route advertise-
ments. However, ODMRP’s 45.59 packets transmitted for
each message is not overwhelmingly larger than APRL’s
33.30. It should, however, be noted that if the size of the
data packets being transmitted is large, APRL would gain
a more noticeable lead over ODMRP, as the majority of
APRL’s traffic is in the form of streamlined control pack-
ets,7 whereas ODMRP includes copies of its data pack-
ets with much of its traffic. Considering that AODV and
ODMRP are both reactive algorithms that flood the net-
work to discover routes, it is also surprising to note how
many fewer packets per message are required by AODV.
This result emphasizes that it is important for protocol de-
signers to carefully consider the flow restrictions on their
route discovery packets. Finally, we note that this exper-
iment generated a modest amount of messages. Because
APRL’s control traffic should remain constant regardless
of the number of messages being sent, it might gain more
of an efficiency advantage over its reactive counterparts if
the amount of data traffic was greatly increased.

2.3.3 Hop count

Figure4 shows, for each algorithm, the average number
of hops successfully received messages traveled to reach
their destination. We limit our sample to successful mes-
sages because we are interested in characterizing the typ-
ical route selected by each algorithm.

For ODMRP, it is difficult to calculate hop count val-
ues because messages can be received at their destination
multiple times from multiple paths of varying length. We
avoid this problem in this plot by counting only the first
copy of each message to successfully arrive.

STARA has the lowest average hop count for success-
fully received packets. This result, however, is due to the
excessive control traffic congestion which made success-
ful packet transmission difficult. In this environment, only
packets being sent to a neighbor had a good chance of suc-
ceeding. Therefore we cannot gain a good understanding
of the typical route selected by this algorithm in more for-
giving conditions.

7APRL uses only a simple binary indication of whether or not a route
exists in its routing table, leading to small control packets.
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Figure 4: The average number of hops traveled for suc-
cessfully received messages.

After STARA, AODV required the next fewest num-
ber of hops for successful packets. It is expected that
AODV should have a lower average hop count than APRL
or ODMRP, as the former finds routes on demand, and
selects for a shorter path, whereas the latter two do not
consider hop count in selecting a route.

In fact, ODMRP has the largest average hop count
value. Because many of its messages arrive randomly
at their destination during the undirected route discovery
phase, ODMRP is unable to always use the most efficient
identified route.

Figures5–7 provide a distribution of hop count values
for each algorithm. Specifically, they show the total num-
ber of messages that traveled each number of hops. They
also include an independent bar for messages that were
successfully received, and an independent bar for mes-
sages that failed. This allows a more detailed understand-
ing of the relationship between route size and message
delivery success. They also include a bar for zero hops,
which represent failed message that never left the sending
host, for lack of a route. We omit a detailed ODMRP hop
count distribution because its flooding approach to mes-
sage delivery makes it impossible to define a comparable
hop count value for failed messages.

Figure5 shows that the vast majority of STARA mes-
sages never made it beyond their source node. Success-
ful messages are clustered almost entirely in the one-hop
bucket, with 513 of 598 total successful messages trav-
eling one hop, 73 traveling two, and only 12 success-
ful messages traveling any further. The maximum path
length traveled by any successful message was 7 hops.
There were also a small number of failed messages that
traveled unusually long routes before failing. The longest
such route was 33 hops.

Considering that this algorithm was transmitting, on av-
erage, 150 packets for each message, interference likely
caused the large number of 0-hop message failures that we
observe. Interference also limited the ability of the algo-
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Figure 5: Distribution of STARA hop count values for all
messages, successful messages, and failed messages.

rithm to maintain reliable routing information. The failed
packets observed to travel over unusually long paths are
likely caused by invalid and looping routes. This is not
suprising, as the congestion generated by STARA would
make it difficult for any node to maintain a full set of con-
sistently valid routes.

Figure6 shows that APRL also had a significant num-
ber of messages fail without leaving their source node.
Successful messages are divided almost equally between
one and two hops, and failed messages decrease regularly
from one to four hops in proportion to the decreasing
number of total messages in each of those buckets. The
longest path traveled by any message was 12 hops.

The large number of observed 0-hop message fail-
ures reveals that the majority of generated messages were
dropped because APRL could not identify a valid route to
the desired destination. The implication of this striking
result is that APRL’s periodic route advertising scheme
was unable to consistently maintain adequate routing in-
formation in our experiment. While we admit that there
would be many situations in our experiment where a route
physically did not exist between two nodes, the large dif-
ference between APRL’s and AODV’s 0-hop failures indi-
cates this more serious problem (AODV is shown in Fig-
ure 7). It is also interesting to note that failed messages
outnumber successful messages in the 1-hop bucket. This
relationship is the opposite of what we see with AODV.
The explanation for this behavior may involve APRL not
selecting for shorter routes. With an average route length
of 2.11 hops (as compared to AODV’s 1.61), APRL cre-
ates more opportunity for invalid routes or collisions to
create failed packet transmissions after one hop.

Figure7 shows that AODV has far fewer 0-hop mes-
sage failures. The majority of its successful messages
traveled one hop, but those that traveled two, three, or four
hops significantly outnumber the failed messages in their
respective buckets. This is especially noticeable in the
two and three-hop buckets where almostall of the mes-
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Figure 6: Distribution of APRL hop count values for all
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Figure 7: Distribution of AODV hop count values for all
messages, successful messages, and failed messages.

sages which traveled that distance were successful. The
longest path traveled by any message was 8 hops.

The implication of these results is that AODV’s on-
demand approach to route discovery worked well in our
dynamic environment. When the algorithm could identify
a route, which it did much more frequently than APRL,
it was subsequently successful in delivering a message to
its intended destination. This indicates quality route in-
formation, and the advantage of AODV in finding more
one-hop paths than APRL, increasing its overall delivery
success, and conserving network resources.

2.3.4 End-to-end latency

Calculating end-to-end latency for ad hoc networks is dif-
ficult. The main obstacle is a lack of synchronization be-
tween the individual node clocks. This creates a situation
in which a comparison of receiver and sender timestamps
is not sufficient for generating accurate latency values.

In our experiment we did not run NTP. We made this
decision to avoid extra computational overhead and band-
width usage. Instead, we relied on the GPS units to pro-
vide accuracy to our clocks. Specifically, we set each node
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clock from the GPS units before the experiment, and reset
them from the units every 10 seconds during the exper-
iment. Since we required regular GPS queries for other
purposes (such as tracking node mobility), this approach
did not introduce significant extra overhead, and required
no bandwidth usage. We found, however, that our node
clocks still drifted from each other on the order of tens to
a few hundreds of milliseconds. We attribute this to de-
lays in reading the time from the GPS unit and invoking
the kernel time system calls.

Though relatively small, this clock drift is still signifi-
cant as many of our calculated end-to-end latency values
are within the same order of magnitude. In this study,
we introduce a novel approach to better approximate time
synchronization in mobile ad hoc nodes. We take advan-
tage of the fact that our nodes were configured to broad-
cast a simple beacon at a regular interval (once every 3
seconds), which provides us with a convenient set oftime
synchronization events.Specifically, if we want to syn-
chronize the clocks between nodeA and nodeB at timet,
we analyze our beacon logs to find a beacon that was sent
by a third node,C, and that was received by bothA and
B near timet. Assuming thatA andB should receive the
broadcast beacon more or less at the same instant, we can
calculate the skew between the two clocks around timet
by comparing what time they each receivedC ’s beacon.
This concept can be extended to find the clock skew be-
tween all node pairs at all times by locating an appropri-
ate time synchronization event for each (nodeA, nodeB ,
timet) 3-tuple.

To be computationally efficient, however, we approxi-
mated this calculation by splitting the duration of each al-
gorithm’s run into a group of 13 equally-sized time buck-
ets. For each bucket, we calculated the average skew value
for every pair of nodes. We did so by performing the skew
calculation for every time synchronization event that oc-
curred within the bucket’s time range, and then averaging
the skew values generated for each pair.

To subsequently calculate the end-to-end latency for a
given message sent fromA to B, we use the send time
to locate the appropriate bucket, and then use the average
skew value stored for (A, B) in that bucket to synchronize
the clocks. If there are no time synchronization events
betweenA andB during the relevant bucket duration, we
throw out the message, and do not include its latency value
in our metric.

We recognize that this approach is only approximate
for several reasons: 1) it is unrealistic to assume that
two nodesA andB will receive and timestamp a broad-
cast beacon at the same instant, as computational factors
unique to each node can affect how long it takes for the
event to actually be logged; 2) in a multi-hop routing en-
vironment, it is possible that the sender and the receiver
of a given packet are too distant to have recently received
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Figure 8: A comparison of average corrected end-to-end
latency, plotted with average hop count for successful
messages.

the same beacon; and 3) using the average observed time
skew calculated over a given bucket duration is not as ac-
curate as always searching out the closest single time syn-
chronization event.

Accordingly, we do not present our end-to-end latency
values as precise measurements. We do, however, main-
tain that our corrected values are more accurate indica-
tions of transit time than relying on uncorrected times-
tamps. We use them here to provide meaningful insight
on matters such as the relative ranking of the algorithms.
We leave the refinement of this technique as future work.

Figure 8 shows the average corrected end-to-end la-
tency value and the average hop count value for success-
ful messages. We find the expected relationship between
end-to-end latency and hop count. For AODV, APRL, and
ODMRP, the average end-to-end latency value increases
roughly proportionately to the average hop count value.
STARA is an exception because it shows a low average
hop count, and a large average end-to-end latency. This
abnormality can be explained by the large amount of com-
putational overhead generated by the excess amount of
control traffic. The notable volume of control packets in
both the receive and send queues of all nodes could signif-
icantly increase the delay between the sender generating
a message and the receiver processing it.

2.4 Conclusions

Any conclusions we draw from this outdoor experiment
must be qualified by the conditions of our particular test-
ing environment. A markedly different scenario could
produce markedly different results. For example, our
nodes were highly mobile, and our terrain was non-
uniform (though there were few permanent obstructions),
leading to a dynamic state of connectivity. This environ-
ment may disadvantage an algorithm like APRL that does
not seek routes on demand. Similarly, our traffic load was
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relatively light,8 which may have advantaged an aggres-
sive data-packet flooding algorithm like ODMRP, which
may have failed under heavier traffic conditions.

With these qualifications in mind, we present the fol-
lowing conclusions:

• AODV is efficient and effective. Though its mes-
sage delivery ratio was not as high as ODMRP, it
delivered messages significantly better than APRL
and STARA. More importantly, on all measures of
communication efficiency, AODV generated by far
the least amount of traffic for each message. And
in terms of route selection, AODV was successful in
consistently finding short paths, giving it the addi-
tional advantage of having the lowest average end-
to-end latency value. In an environment with limited
bandwidth, or limited energy resources, AODV is a
good choice as a provider of low-cost, adaptable, re-
liable, and fast communication.

• ODMRP is optimal for specific scenarios, bad for
others. This algorithm generates a lot of overhead
traffic. Its network flooding is bandwidth intensive,
and if data packets are large, ODMRP could fail due
to congestion. At the same time, however, it had
the highest message delivery ratio of all four algo-
rithms. This indicates that in a situation in which
bandwidth and energy resources are plentiful, data
packets are small, and communication reliability is
crucial, ODMRP is a good choice.9

• APRL performed poorly in our environment. Its
message delivery ratio was low, its overhead was
large, and it had a substantial percentage of packets
fail at their source. Our results indicate that APRL
had a hard time maintaining reliable routing infor-
mation in our relatively dynamic environment. In
any scenario comparable to our experiment, APRL
shows no clear advantage over a reactive algorithm
such as AODV.

• Our STARA implementation emphasizes the im-
portance of flow control. In their original paper,
Gupta and Kumar validated STARA with a simple
stochastic simulation that did not model collision or
interference effects [GK97]. Their analytic valida-
tion demonstrated that STARA performs better than
other approaches because of its dynamic avoidance
of highly trafficked routes. Their analysis, however,

8Messages were generated, on average, only once every three sec-
onds.

9Because we reduced ODMRP to the unicast case for our experiment,
we can not specifically address its effectiveness as a provider of multi-
cast communication. We hope, however, that our analysis of its general
communication efficiency and reliability can still act as useful guides for
those interested in effective multicast communication.

avoids the reality that would be clear in more detailed
simulation: If control traffic is not carefully con-
trolled, it can destabilize the entire network through
excessive congestion. Gupta later identifies the po-
tential for this problem in his PhD thesis, where he
briefly suggests one possible solution [Gup00]. He
goes on to suggest that more extensive simulation
is necessary before the design could be considered
complete. We agree, and further recommend thatall
protocol designers integrate more detailed simulation
into their design process so as to more effectively ad-
dress necessary practical concerns, such as flow con-
trol, in their original protocol specifications.

• Reactive is better than proactive in dynamic envi-
ronments. APRL and STARA’s poor performance,
as compared to AODV and ODMRP’s relative suc-
cess, highlights the general advantage of a reac-
tive approach to routing in a dynamic environment.
Our analysis of APRL shows an unnecessarily large
number of messages dropped before leaving their
source node, and STARA crippled itself with ex-
cessive proactive discovery. It is a fair assumption
that if we had restrained STARA’s control traffic to
a reasonable level, it would have faced the same
lack of quality routing information demonstrated by
APRL. Similarly, if we had decreased APRL’s route
advertisement interval to increase the timeliness of
its routing information, it would have suffered from
an excess amount of control traffic. This observa-
tion underscores the perhaps unresolvable tension
between control traffic and message delivery success
present in proactive algorithms operating in dynamic
environments: If you make your algorithm efficient,
its reliability drops; if you make your algorithm re-
liable, its efficiency drops. Reactive approaches are
clearly preferable for scenarios with variable connec-
tivity.

3 Common assumptions in ad hoc
network simulation

Now that we have described the behavior of a real ad hoc
network, we can explore how close simulation comes to
reproducing this reality. In this section, we demonstrate
how the commonly used theoretical models of radio be-
havior are far simpler than reality, and we codify these
simplifications into a group of six assumptions commonly
made by simulation designers. Using data from our out-
door experiment, we prove these six assumptions to be
false.

In the following section, we use a wireless network
simulator, configured to mimic our real world experiment,
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to quantify and describe the impact of these assumptions
on simulation results.

3.1 Radios in theory and practice

The top example in Figure9 provides a simple model of
radio propagation, one that is used in many simulations
of ad hoc networks; contrast it to the bottom example of
a real signal-propagation map, drawn at random from the
web. Measurements from an ad hoc network of Berkeley
Motes demonstrate a similar non-uniform non-circular be-
havior [GKW+02]. The simple model is based on Carte-
sian distance in an X-Y plane. More realistic models take
into account antenna height and orientation, terrain and
obstacles, surface reflection and absorption, and so forth.

Of course, not every simulation study needs to use the
most detailed radio model available, nor explore every
variation in the wide parameter space afforded by a com-
plex model. The level of detail necessary for a given an-
alytic or simulation study depends on the characteristics
of the study. The majority of results published to date use
the simple models, however, with no examination of the
sensitivity of results to the (often implicit) assumptions
embedded in the model.

There are real risks to protocol designs based on overly
simple models of radio propagation. First, “typical” net-
work connectivity graphs look quite different in reality
than they do on a Cartesian grid. An antenna placed top
of a hill has direct connectivity with all other nearby ra-
dios, for example, an effect that cannot be observed in
simulations that represent only flat plains. Second, it is
often difficult in reality to estimate whether or not one
has a functioning radio link between nodes, because sig-
nals fluctuate greatly due to mobility and fading as well
as interference. Broadcasts are particularly hard-hit by
this phenomenon as they are not acknowledged in typi-
cal radio systems. Protocols that rely on broadcasts (e.g.,
beacons) or “snooping” may therefore work significantly
worse in reality than they do in simulation.

Figure10depicts one immediate drawback to the over-
simplified model of radio propagation. The three different
models in the figure, the Cartesian “Flat Earth” model, a
three-dimensional model that includes a single hill, and a
model that includes (absorptive) obstacles, all produce en-
tirely different connectivity graphs, even though the nodes
are in the same two-dimensional positions. As all the
nodes move, the ways in which the connectivity graph
changes over time will be different in each scenario.

Figure11 presents a further level of detail. At the top,
we see a node’s trajectory past the theoretical (T) and
practical (P) radio range of another node. Beneath it we
sketch the kind of change in link quality we might ex-
pect under these two models. The theoretical model (T)
gives a simple step function in connectivity: either one

Typical theoretical model

Source: Comgate Engineering
http://www.comgate.com/ntdsign/wireless.html

Figure 9: Real radios, such as the one at the bottom, are
more complex than the common theoretical model at the
top. Here different colors, or shades of gray, represent
different signal qualities.

is connected or one is not. Given a long enough straight
segment in a trajectory, this leads to a low rate of change
in link connectivity. As such, this model makes it easy to
determine when two nodes are, or are not, “neighbors” in
the ad hoc network sense.

In the more realistic model (P), the quality of the link is
likely to vary rapidly and unpredictably, even when two
radios are nominally “in range.” In these more realis-
tic cases, it is by no means easy to determine when two
nodes have become neighbors, or when a link between
two nodes is no longer usable and should be torn down.
In the figure, suppose that a link quality of 50% or better
is sufficient to consider the nodes to be neighbors. In the
diagram, the practical model would lead to the nodes be-
ing neighbors briefly, then dropping the link, then being
neighbors again, then dropping the link.

In addition to spatial variations in signal quality, a ra-
dio’s signal quality varies over time, even for a station-
ary radio and receiver. Obstacles come and go: people
and vehicles move about, leaves flutter, doors shut. Link
connectivity can come and go; one packet may reach a
neighbor successfully, and the next packet may fail. Both
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Figure 10: The Flat Earth model is overly simplistic.

short-term and long-term changes are common in reality,
but not considered by most practical models. Some, but
not all, of this variation can be masked by the physical or
data-link layer of the network interface.

Although the theoretical model may be easy to use
when simulating ad hoc networks, it leads to an incor-
rect sense of the way the network evolves over time. For
example, in Figure11, the link quality (and link connec-
tivity) varies much more rapidly in practice than in the-
ory. Many algorithms and protocols may perform much
more poorly under such dynamic conditions. In some,
particularly if network connectivity changes rapidly with
respect to the distributed progress of network-layer or
application-layer protocols, the algorithm may fail due
to race conditions or a failure to converge. Simple ra-
dio models fail to explore these critical realities that can
dramatically affect performance and correctness. For ex-
ample, Ganesan et al. measured a dense ad hoc network
of sensor nodes and found that small differences in the
radios, the propagation distances, and the timing of colli-
sions can significantly alter the behavior of even the sim-
plest flood-oriented network protocols [GKW+02].

In summary,“good enough” radio models are quite im-
portant in simulation of ad hoc networks. The Flat Earth
model, however, is by no means good enough. In the fol-
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Figure 11: Difference between theory (T) and practice
(P).

lowing sections we make this argument more precise.

3.2 Models used in research

We surveyed a set of MobiCom and MobiHoc proceed-
ings from 1995 through 2003. We inspected the simula-
tion sections of every article in which RF modeling issues
seemed relevant, and categorized the approach into one of
three bins:Flat Earth, Simple, andGood. This catego-
rization required a fair amount of value judgment on our
part, and we omitted cases in which we could not deter-
mine these basic facts about the simulation runs.

Figure 12 presents the results. Note that even in
the best years, the Simple and Flat-Earth papers signifi-
cantly outnumber the Good papers. A few, such as Takai
et al. [TMB01], deserve commendation for thoughtful
channel models.

Flat Earth models are based on Cartesian X–Y prox-
imity, that is, nodesA andB communicate if and only if
nodeA is within some distance of nodeB.

Simple modelsare, almost without exception,ns-2
models using the CMU 802.11 radio model [FV02]. This
model provides what has sometimes been termed a “real-
istic” radio propagation model. Indeed it is significantly
more realistic than the “Flat Earth” model, e.g., it models
packet delay and loss caused by interference rather than
assuming that all transmissions in range are received per-
fectly. We still call it a “simple” model, however, because
it embodies many of the questionable axioms we detail
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Figure 12: The number of papers in each year of Mobicom
and MobiHoc that fall into each category.

below. In particular, the standard release ofns-2 pro-
vides a simple free-space model (often termed a “Friis-
free-space” model in the literature) and a two-ray ground-
reflection model. Both are described in thens-2 docu-
ment package [FV02].

The free-space model is similar to the “Flat Earth”
model described above, as it does not include effects of
terrain, obstacles, or fading. It does, however, model sig-
nal strength with somewhat finer detail (1/r2) than just
“present” or “absent.”

The two-ray ground-reflection model, which considers
both the direct and ground-reflected propagation path be-
tween transmitter and receiver, is better, but not partic-
ularly well suited to most MANET simulations. It has
been reasonably accurate for predicting large-scale sig-
nal strength over distances of several kilometers for cel-
lular telephony systems using tall towers (heights above
50m), and also for line-of-sight micro-cell channels in
urban environments. Neither is characteristic of typical
MANET scenarios. In addition, while this propagation
model does take into account antenna heights of the two
nodes, it assumes that the earth is flat (and there are oth-
erwise no obstructions) between the nodes. This may be
a plausible simplification when modeling cell towers, but
not when modeling vehicular or handheld nodes because
these are often surrounded by obstructions. Thus it too is
a “Flat Earth” model, even more so if the modeler does
not explicitly choose differing antenna heights as a node
moves.10

More recently,ns-2 added a third channel model—the
“shadowing” model described earlier by Lee [Lee82]—
to account for indoor obstructions and outdoor shad-

10See also Lundberg [Lun02], Sections 4.3.4–4.3.5, for additional re-
marks on the two-ray model’s lack of realism.

owing via a probabilistic model [FV02]. The problem
with ns-2 ’s shadowing model is that the model does
not consider correlations: a real shadowing effect has
strong correlations between two locations that are close
to each other. More precisely, the shadow fading should
be modeled as a two-dimensional log-normal random
process with exponentially decaying spatial correlations
(see [Gud91] for details). To our knowledge, only a few
simulation studies include a valid shadowing model. For
example, WiPPET considers using the correlated shad-
owing model to compute a gain matrix to describe ra-
dio propagation scenarios [KLM +00]. WiPPET, however,
only simulates cellular systems. The simulation model
we later use for this study considers the shadowing ef-
fect as a random process that is temporally correlated; be-
tween each pair of nodes we use the same sample from the
log-normal distribution if the two packets are transmitted
within a pre-specified time period.11

Good models have fairly plausible RF propagation
treatment. In general, these models are used in papers
coming from the cellular telephone community, and con-
centrate on the exact mechanics of RF propagation. To
give a flavor of these “good” models, witness this quote
from one such paper [ER00]:

In our simulations, we use a model for the path
loss in the channel developed by Erceg et al.
This model was developed based on extensive
experimental data collected in a large number
of existing macro-cells in several suburban ar-
eas in New Jersey and around Seattle, Chicago,
Atlanta, and Dallas. . . . [Equation follows with
parameters for antenna location in 3-D, wave-
length, and six experimentally determined pa-
rameters based on terrain and foliage types.]
. . . In the results presented in this section, . . . the
terrain was assumed to be either hilly with light
tree density or flat with moderate-to-heavy tree
density. [Detailed parameter values follow.]

Of course, the details of RF propagation are not al-
ways essential in good network simulations; most criti-
cal is the overall realism of connectivity and changes in
connectivity (Are there hills? Are there walls?). Along
these lines, we particularly liked the simulations of well-
known routing algorithms presented by Johansson et al.
[JLH+99], which used relatively detailed, realistic sce-
narios for a conference room, event coverage, and disas-
ter area. Although this paper employed thens-2 802.11
radio model, it was rounded out with realistic network ob-
stacles and node mobility.

11A recent study by Yuen et al. proposes a novel approach to modeling
the correlation as a Gauss-Markov process [YLA02]. We are currently
investigating this approach.
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3.3 Common MANET axioms

For the sake of clarity, let us be explicit about some basic
“axioms” upon which most MANET research explicitly
or implicitly relies. These axioms, not all of which are
orthogonal, deeply shape how network protocols behave.
We note that all of these axioms are contradicted by the
actual measurements reported in the next section.
0: The world is flat.
1: A radio’s transmission area is circular.
2: All radios have equal range.
3: If I can hear you, you can hear me (symmetry).
4: If I can hear you at all, I can hear you perfectly.
5: Signal strength is a simple function of distance.

There are many combinations of these axioms seen in
the literature. In extreme cases, the combination of these
axioms leads to a simple model like that in the top dia-
gram in Figure9. Some papers assume Axioms 0–4 and
yet use a simple signal propagation model that expresses
some fading with distance; a threshold on signal strength
determines reception. Some papers assume Axioms 0–3
and add a reception probability to avoid Axiom 4.

In this paper we address the research community in-
terested in ad hoc routing protocols and other distributed
protocols at the network layer. The network layer rests
on the physical and medium-access (MAC) layers, and its
behavior is strongly influenced by their behavior. Indeed
many MANET research projects consider the physical and
medium-access layer as a single abstraction, and use the
above axioms to model their combined behavior. We take
this network-layer point of view through the remainder of
the section. Although we mention some of the individual
physical- and MAC-layer effects that influence the behav-
ior seen at the network layer, we do not attempt to iden-
tify precisely which effects cause which behaviors; such
an exercise is beyond the scope of this paper. We next
show that the above axioms do not adequately describe
the network-layer’s view of the world. Then, in Section 4,
we show how the use of these axioms leads simulations to
results that differ radically from reality.

3.4 The reality of the axioms

Unfortunately, real wireless network devices are not
nearly as simple as those considered by the axioms in the
preceding section. In this section, we use data collected
from the large MANET experiment described previously
to examine the reality of radio behavior in an actual ad hoc
network implementation. We demonstrate how this reality
clearly differs from the behavior described by our axioms.

Before proceeding, it should be noted that the wireless
cards in our experiment operated at 2 Mb/s. This fixed rate
made it much easier to conduct the experiment, since we
did not need to track (and later model) automatic changes

to each card’s transmission rate. Most current wireless
cards are multi-rate, however, which could lead toAx-
iom 6: Each packet is transmitted at the same bit rate.
We leave the effects of this axiom as an area for future
work.

We also note that in the following analysis we do not
use data from the STARA portion of the outdoor experi-
ment. We were concerned that the excessive control traf-
fic generated by this algorithm might impede an accurate
assessment of the observed radio behavior.

3.4.1 Axiom 0

The world is flat.

Common stochastic radio propagation models assume
a flat earth, and yet clearly the Earth is not flat. Even
at the short distances considered by most MANET re-
search, hills and buildings present obstacles that dramati-
cally affect wireless signal propagation. Furthermore, the
wireless nodes themselves are not always at ground level.
A local researcher using Berkeley “motes” for sensor-
network research notes the critical impact of elevation and
ground-reflection effects:

In our current experiments we just bought 60
plastic flower pots to raise the motes off the
ground because we found that putting the motes
on the ground drastically reduces their transmit
range (though not the receive range). Raising
them a few inches makes a big difference.

Even where the ground is nearly flat, note that wireless
nodes are often used in multi-story buildings. Indeed two
nodes may be found at exactly the samex, y location, but
on different floors. (This condition is common among the
WiFi access points deployed on our campus.) Any Flat
Earth model would assume that they are in the same loca-
tion, and yet they are not. In some tall buildings, we found
it was impossible for a node on the fourth floor to hear a
node in the basement, at the samex, y location.

We need no data to “disprove” this axiom. Ultimately,
it is the burden of all MANET researchers to either a) use
a detailed and realistic terrain model, accounting for the
effects of terrain, or b) clearly condition their conclusions
as being valid only on flat, obstacle-free terrain.

3.4.2 Axioms 1 and 2

A radio’s transmission area is circular.

All radios have equal range.

The real-world radio map of Figure9 makes it clear
that the signal coverage area of a radio is far from simple.
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Not only is it neither circular nor convex, it often is non-
contiguous.

We combine the above two intuitive axioms into a more
precise, testable axiom that corresponds to the way the
axiom often appears (implicitly) in MANET research.

Testable Axiom 1. The success of a transmission from
one radio to another depends only on the distance

between radios.

Although it is true that successful communication usu-
ally becomes less likely with increasing distance, there are
many other factors: (1) All radios are not identical. Al-
though in our experiment we used “identical” WiFi cards,
there are reasonable applications where the radios or an-
tennas vary from node to node. (2) Antennas are not per-
fectly omnidirectional. Thus, the angle of the sender’s
antenna, the angle of the receiver’s antenna, and their rel-
ative locations all matter. (3) Background noise varies
with time and location. Finally, (4) there are hills and
obstacles, including people, that block or reflect wireless
signals (that is, Axiom 0 is false).

From the point of view of the network layer, these
physical-layer effects are compounded by MAC-layer ef-
fects, notably, that collisions due to transmissions from
other nodes in the ad hoc network (or from third parties
outside the set of nodes forming the network) reduce the
transmission success in ways that are unrelated to dis-
tance. In this section, we use our experimental data to
examine the effect of antenna angle, sender location, and
sender identity on the probability distribution of beacon
reception over distance.

We first demonstrate that the probability of a beacon
packet being received by nearby nodes depends strongly
on the angle between sender and receiver antennas. In
our experiments, we had each student carry their “node,”
a closed laptop, under their arm with the wireless inter-
face (an 802.11b device in PC-card format) sticking out
in front of them. By examining successive location ob-
servations for the node, we compute the orientation of the
antenna (wireless card) at the time it sent or received a
beacon. Then, we compute two angles for each beacon:
the angle between the sender’s antenna and the receiver’s
location, and the angle between the receiver’s antenna and
the sender’s location. Figure13illustrates the first of these
two angles, while the second is the same figure except
with the labels Source and Destination transposed. Fig-
ure14shows how the beacon-reception probability varied
with both angles.

To compute Figure14, we consider all possible values
of each of the two angles, each varying from[−180, 180).
We divide each range into buckets of 45 degrees, such that
bucket 0 represents angles in[0, 45), bucket 45 represents
angles in[45, 90), and so forth. Since we bucket both an-
gles, we obtain the two-dimensional set of buckets shown

in the figure. We use two counters for each bucket, one ac-
counting for actual receptions, and the other for potential
receptions (which includes actual receptions). Each time
a node sends a beacon, every other laptop is a potential
recipient. For every other laptop, therefore, we add one to
the potential-reception count for the bucket representing
the angles between the sender and the potential recipient.
If we can find a received beacon in the potential recipi-
ent’s beacon log that matches the transmitted beacon, we
also add one to the actual-reception count for the appro-
priate count. The beacon reception ratio for a bucket is
thus the number of actual receptions divided by the num-
ber of potential receptions. Each beacon-reception prob-
ability is calculated without regard to distance, and thus
represents the reception probability across all distances.
In addition, for all of our axiom analyses, we considered
only the western half of the field, and incremented the
counts only when both the sender and the (potential) re-
cipient were in the western half. By considering only the
western half, which is perfectly flat and does not include
the lower-altitude section, we eliminate the most obvious
terrain effects from our results. Overall, there were 40,894
beacons transmitted in the western half of the field, and af-
ter matching and filtering, we had 275,176 laptop pairs, in
121,250 of which the beacon was received, and in 153,926
of which the beacon was not received.

Figure14 shows that the orientation of both antennas
was a significant factor in beacon reception. Of course,
there is a direct relationship between the antenna angles
and whether the sender or receiver (human or laptop) is
between the two antennas. With a sender angle of 180,
for example, the receiver is directly behind the sender, and
both the sender’s body and laptop serves as an obstruction
to the signal. A different kind of antenna, extending above
the level of the participants’ heads, would be needed to
separate the angle effects into two categories, effects due
to human or laptop obstruction, and effects due to the ir-
regularity of the radio coverage area.

Although the western half of our test field was flat, we
observed that the beacon-reception probability distribu-
tion varied in different areas. We subdivided the western
half into four equal-sized quadrants (northwest, northeast,
southeast, southwest), and computed a separate reception
probability distribution for beacons sent from each quad-
rant. Figure15 shows that the distribution of beacon-
reception probability was different for each quadrant, by
about 10–15 percent for each distance. We bucketed the
laptop pairs according to the distance between the sender
and the (intended) destination—the leftmost bar in the
graph, for example, is the reception probability for laptop
pairs whose separation was in the range[0, 25). Although
there are many possible explanations for this quadrant-
based variation, whether physical terrain, external noise,
or time-varying conditions, the difference between distri-
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Figure 13: The angle between the sending laptop’s an-
tenna (wireless card) and the destination laptop.

butions is enough to make it clear that the location of the
sender is not to be ignored.

The beacon-reception probability in the western half
of the field also varied according to the identity of the
sender. Although all equipment used in every node was
an identical model purchased in the same lot and con-
figured identically, the distribution was different for each
sender. Figure16 shows the mean and standard devia-
tion of beacon-reception probability computed across all
sending nodes, for each bucket between 0 and 300 me-
ters. The buckets between 250 and 300 meters were nearly
empty. Although the mean across nodes, depicted by
the boxes, is steadily decreasing, there also is substantial
variation across nodes, depicted by the standard-deviation
bars on each bucket. This variation cannot be explained
entirely by manufacturing variations within the antennas,
and likely includes terrain, noise and other factors, even
on our space of flat, open ground. It also is important to
note, however, that there are only 500-1000 data points
for each (laptop, destination bucket) pair. With this num-
ber of data points, the differences may not be statistically
significant. In particular, if a laptop is moving away from
most other laptops, we might cover only a small portion
of the possible angles, leading to markedly different re-
sults than for other laptops. Overall, the effect of identity
on transmission behavior bears further study with experi-
ments specifically designed to test it.

In other work, Ganesan et al. used a network of Berke-
ley “motes” to measure signal strength of a mote’s radio
throughout a mesh of mote nodes [GKW+02].12 The re-
sulting contour map is not circular, nor convex, nor even
monotonically decreasing with distance. Indeed, since the

12The Berkeley mote is currently the most common research platform
for real experiments with ad hoc sensor networks.
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Figure 14: The probability of beacon reception (over all
distances) as a function of the two angles, the angle be-
tween the sender’s antenna orientation and the receiver’s
location, and the angle between the receiver’s antenna ori-
entation and the sender’s location. In this plot, we divide
the angles into buckets of 45 degrees each, and include
only data from the western half of the field. We also ex-
press the angles on the scale of -180 to 180, rather than 0
to 360, to better capture the inherent symmetry. -180 and
180 both refer to the case where the sending antenna is
pointing directly away from the intended destination, or,
correspondingly, the receiving antenna is pointing directly
away from the sending node.

coverage area of a radio is not circular, it is difficult to
even define the “range” of a radio.

3.4.3 Axiom 3

If I can hear you, you can hear me (symmetry).

More precisely,

Testable Axiom 3: If a message fromA to B succeeds, an
immediate reply fromB to A succeeds.

This wording adds a sense of time, since it is clearly
impossible (in most MANET technologies) forA andB
to transmit at the same time and result in a successful mes-
sage, and sinceA andB may be moving, it is important
to consider symmetry over a brief time period so thatA
andB have not moved apart.

There are many factors affecting symmetry, from the
point of view of the network layer, including the phys-
ical effects mentioned above (terrain, obstacles, relative
antenna angles) as well as MAC-layer collisions. It is
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Figure 15: The probability of beacon reception varied
from quadrant to quadrant within the western half of the
field.
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Figure 16: The average and standard deviation of recep-
tion probability across all nodes, again for the western half
of the field.

worth noting that the 802.11 MAC layer includes an inter-
nal acknowledgment feature, and a limited amount of re-
transmission attempts until successful acknowledgment.
Thus, the network layer does not perceive a frame as suc-
cessfully delivered unless symmetric reception was pos-
sible. Thus, for the purposes of this axiom, we chose
to examine the broadcast beacons from our experimental
dataset, since the 802.11 MAC has no internal acknowl-
edgment for broadcast frames. Since all of our nodes sent
a beacon every three seconds, we were able to identify
symmetry as follows: whenever a nodeB received a bea-
con from nodeA, we checked to see whetherB’s next
beacon was also received by nodeA.

Figure17shows the conditional probability of symmet-
ric beacon reception. Using the definition of symmetry
described above, we calculate each bar by dividing the
number of observed symmetric relationships by the total
number of observed symmetricand asymmetric relation-
ships for the given distance range. If the physical and
MAC layer behavior was truly symmetric, this probabil-
ity would be 1.0 across all distances. In reality, the prob-
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Figure 17: The conditional probability of symmetric bea-
con reception as it varied with the distance between two
nodes, again for the western half of the field.

ability was never much more than 0.8, most likely due to
MAC-layer collisions between beacons. Since this graph
depends on the joint probability of a beacon arriving from
A to B and then another fromB to A, the lower reception
probability of higher distances leads to a lower joint prob-
ability and a lower conditional probability. The abnormal
bump in the 200 to 225 meter distance bucket is explained
by the fact that the experimental field was roughly 225
meters long on its north-south axis. We observed that it
was a common movement pattern to walk to the either the
northern or southern terminus of the field, and then turn to
head toward another location. Therefore, there commonly
occurred a situation where two nodes would be facing
each other from opposite ends of the field. In this orien-
tation their reception probability was increased, bumping
up the overall probability observed for this range.

Figure18shows how the conditional probability varied
across all the nodes in the experiment. The probability
was consistently close to its mean 0.76, but did vary from
node to node with a standard deviation of 0.029 (or 3.9%).
Similarly, when calculated for each of the four quadrants
(not shown), the probability also was consistently close to
its mean 0.76, but did have a standard deviation of 0.033
(or 4.3%). As mentioned in the discussion of Axioms
1 and 2, there are many possible explanations for these
variations, including physical terrain, external noise, and
different movement patterns. Regardless of the specific
causes, the fact that this variation exists evidences the in-
validity of assuming equal symmetry among all nodes and
locations in a real environment.

In other work, Ganesan et al. [GKW+02] noted that
about 5–15% of the links in their ad hoc sensor network
were asymmetric. In that paper, an asymmetric link had
a “good” link in one direction (with high probability of
message reception) and a “bad” link in the other direction
(with a low probability of message reception). [They do
not have a name for a link with a “mediocre” link in either
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Figure 18: The conditional probability of symmetric bea-
con reception as it varied across individual nodes, again
for the western half of the field.

direction.]
Overall, it is clear that reception is far from symmetric.

Nonetheless, many researchers assume this axiom is true,
and that all network links are bidirectional. Some do ac-
knowledge that real links may be unidirectional, and usu-
ally discard those links so that the resulting network has
only bidirectional links. In a network with mobile nodes
or in a dynamic environment, however, link quality can
vary frequently and rapidly, so a bidirectional link may
become unidirectional at any time. It is best to develop
protocols that do not assume symmetry.

3.4.4 Axiom 4

If I can hear you at all, I can hear you perfectly.

Testable Axiom 4: The reception probability distribution
over distance exhibits a sharp cliff; that is, under some

threshold distance (the “range”) the reception
probability is 1 and beyond that threshold the reception

probability is 0.

Looking back at Figure16, we see that the beacon-
reception probability does indeed fade with the distance
between the sender and the receiver, rather than remain-
ing near 1 out to some clearly defined “range” and then
dropping to zero. There is no visible “cliff.” The com-
monns-2 model, however, assumes that frame transmis-
sion is perfect, within the range of a radio, and as long as
there are no collisions. Althoughns-2 provides hooks to
add a bit-error-rate (BER) model, these hooks are unused.
More sophisticated models do exist, particularly those de-
veloped byQualnet and the GloMoSim project13 that are
being used to explore how sophisticated channel models
affect simulation outcomes.

Takai examines the effect of channel models on sim-
ulation outcomes [TBTG01], and also concluded that

13http://www.scalable-networks.com/pdf/mobihocpreso.pdf

different physical layer models can have dramatically
different effect on the simulated performance of proto-
cols [TMB01], but lack of data prevented them from fur-
ther validating simulation results against real-world ex-
periment results, which they left as future work. In the
next section, we compare the simulation results with data
collected from a real-world experiment, and recommend
that simple models of radio propagation should be avoided
whenever comparing or verifying protocols, unless that
model is known to specifically reflect the target environ-
ment.

3.4.5 Axiom 5

Signal strength is a simple function of distance.

Rappaport [Rap96] notes that the average signal
strength should fade with distance according to a power-
law model. While this is true, one should not underes-
timate the variations in a real environment caused by ob-
struction, reflection, refraction, and scattering. In this sec-
tion, we show that there is significant variation for individ-
ual transmissions.

Testable Axiom 5: We can find a good fit between a
simple function and a set of (distance, signal strength)

observations.

To examine this axiom, we consider only received bea-
cons, and use the recipient’s signal log to obtain the signal
strength associated with that beacon. More specifically,
the signal log actually contains per-second entries, where
each entry contains the single strength of the most recent
packet received from each laptop. If a data or routing
packet arrives immediately after a beacon, the signal-log
entry actually will contain the signal strength of that sec-
ond packet. We do not check for this situation, since the
signal information for the second packet is just as valid
as the signal information for the beacon. It is best, how-
ever, to view our signal values as those observed within
one second of beacon transmission, rather than the values
associated with the beacons themselves.

As a starting point, Figure19 shows themeanbea-
con signal strength observed during the experiment as a
function of distance, as well as best-fit linear and power
curves. The power curve is a good fit and validates Rap-
paport’s observation. When we turn our attention to the
signal strength of individual beacons, however, as shown
in Figures20 and 21, there clearly is no simple (non-
probabilistic) function that will adequately predict the sig-
nal strength of an individual beacon based on distance
alone.

The reason for this difficulty is clear: our environment,
although simple, is full of obstacles and other terrain fea-
tures that attenuate or reflect the signal, and the cards
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Figure 19: Linear and power-curve fits for the mean sig-
nal strength observed in the western half of the field. Note
that we show the signal strength as reported by our wire-
less cards (which is dBm scaled to a positive range by
adding 255), and we plot the mean value for each distance
bucket at the midpoint of that bucket.

themselves do not necessarily radiate with equal power
in all directions. In our case, the most common obsta-
cles were the people and laptops themselves, and in fact,
we initially expected to discover that the signal strength
was better behaved across a specific angle range (per Fig-
ure 14) than across all angles. Even for the seemingly
good case of both source and destination angles between
0 and 45 degrees (i.e., the sender and receiver roughly
facing each other), we obtain a distribution (not shown)
remarkably similar to Figure20. Other angle ranges also
show the same distribution as Figure20.

Overall, noise-free, reflection-free, obstruction-free,
uniformly-radiating environments are simply not real, and
signal strength of individual transmissions will never be a
simple function of distance. Researchers must be care-
ful to consider how sensitive their simulation results are
to signal variations, since their algorithms will encounter
significant variation once deployed.

Summary. These axioms are often considered to be a
reasonable estimate of how radios actually behave, and
therefore they are frequently used in simulation without
reservation. Our data, however, reveal the danger of such
a belief. These assumptions do not just simplify reality,
in many cases they distort it. An algorithm that performs
well in the calm and predictable physical environment de-
scribed by our axioms may perform quite differently in the
inconsistent and highly variable physical environment that
we observe in the real world. These results should compel
simulation designers to carefully consider and condition
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Figure 20: A scatter plot demonstrating the poor correla-
tion between signal strength and distance. We restrict the
plot to beacons both sent and received on the western half
of the field, and show the mean signal strength as a heavy
dotted line.
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numberof observed data points as a function of distance
and signal strength. There is significant weight relatively
far away from the mean value.

the simplifications they integrate into their radio models.
In the next section we quantitatively explore the impact of
these axioms.

4 Computer simulation results

We demonstrate above that the axioms are untrue, but a
key question remains: what is the effect of these axioms
on the quality of simulation results? In this section, we
begin by comparing the results of our outdoor experiment
with the results of a best-effort simulation model, and then
progressively weaken the model by assuming some of the
axioms. To better understand the observed effects, we
then use a connectivity trace, derived from the outdoor
experiment data, to more generally validate and probe the
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predictive power of our simplified models. We also exam-
ine the role of two important parameters in generating the
results.

With the exception of the experiment represented by
Figure 26, we exclude STARA from our simulation runs
because of its excessive control traffic problems. This un-
usual behavior makes it a poor choice for most of our real
world versus simulation comparisons. We include it in
this figure alone to validate our claim from Section 2 that
detailed simulation would have revealed STARA’s traffic
flow problems to its designers. As we expected, the de-
tailed model came much closer than the two simpler mod-
els in predicting the algorithm’s poor performance.14

The purpose of this study is not to claim that our simu-
lator can accurately model the real network environment.
Instead, we show quantitatively the impact of the axioms
on the simulated behavior of routing protocols, and pro-
vide detailed insight into the varied robustness of three
popular radio models.

We recognize that analytical or simulation research in
wireless networking must work with an abstraction of re-
ality, modeling the behavior of the wireless network be-
low the layer of interest. Unfortunately, overly simplistic
or malformed assumptions can lead to misleading or in-
correct conclusions.

Our results provide a counter-example to the notion that
the arbitrary selection and generic configuration of any
popular radio propagation model is sufficient for research
on ad hoc routing algorithms. We do not claim to validate,
or invalidate, the results of any other published study. In-
deed, our point is that the burden is on the authors of past
and future studies to a) clearly lay out the assumptions
made in their simulation model, b) demonstrate whether
those assumptions are reasonable within the context of
their study, and c) clearly identify any limitations in the
conclusions they draw.

4.1 The wireless network simulator

We used SWAN [LYN+04], a simulator for wireless
ad hoc networks that provides an integrated, configurable,
and flexible environment for evaluating ad hoc routing
protocols, especially for large-scale network scenarios.
SWAN contains a detailed model of the IEEE 802.11
wireless LAN protocol and a stochastic radio channel
model, both of which were used in this study.

We used SWAN’s direct-execution simulation tech-
niques to execute within the simulator thesamerouting
code that was used in the experiments from the previous

14The two simpler models double the message delivery ratio predicted
by the most detailed model. The even simpler analytical model used by
STARA’s designers would have exaggerated this value even more. One
good simulation run, using a good stochastic model, would have revealed
a drastic performance gap between their simple predictions and reality.

section. We modified the real routing code only slightly
to allow multiple instances of a routing protocol imple-
mentation to run simultaneously in the simulator’s single
address space.

We extended the simulator to read the node mobility
and application-level data logs generated by the real ex-
periment. In this way, we were able to reproduce the same
network scenario in simulation as in the real experiment.
To further increase the fidelity of our simulation, we fo-
cused only on the 33 laptops that actually transmitted, re-
ceived, and forwarded packets in the real experiments. To
reproduce a comparable traffic pattern in simulation, the
application traffic generator on each of the 33 active nodes
still included the 7 crashed nodes as their potential packet
destinations. Moreover, by directly running the routing
protocols and the beacon service program, the simulator
generated the same types of logs as in the real experiment.
These conditions allow a direct comparison of results.

In the next few sections, we describe three simulation
models with progressively unrealistic assumptions, and
then present results to show the impact.

4.2 Our best model

We begin by comparing the results of the outdoor exper-
iment with the simulation results obtained with our best
signal propagation model and a detailed 802.11 protocol
model. The best signal propagation model is a stochastic
model that captures radio signal attenuation as a combi-
nation of two effects: small-scale fading and large-scale
fading. Small-scale fading describes the rapid fluctua-
tion in the envelope of a transmitted radio signal over
a short period of time or a small distance, and primar-
ily is caused by multipath effects. Although small-scale
fading is in general hard to predict, wireless researchers
over the years have proposed several successful statisti-
cal models for small-scale fading, such as the Rayleigh
and Ricean distributions. Large-scale fading describes the
slowly varying signal-power level over a long time inter-
val or a large distance, and has two major contributing
factors: distance path-loss and shadow fading. The dis-
tance path-loss models the average signal power loss as a
function of distance: the receiving signal strength is pro-
portional to the distance between the transmitter and the
receiver raised to a given exponent. Both the free-space
model and the two-ray ground reflection model mentioned
earlier can be classified as distance path-loss models. The
shadow fading describes the variations in the receiving
signal power due to scattering; it can be modeled as a
zero-mean log-normal distribution. Rappaport [Rap96]
provides a detailed discussion of these and other models.

For our simulation, given the light traffic used in the
real experiment, we used a simple SNR threshold ap-
proach instead of a more computationally intensive BER
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Experiment Simulation Error
AODV 42.3% 46.8% 10.5%
APRL 17.5% 17.7% 1.1%

ODMRP 62.6% 56.9% -9.2%

Table 2: Comparing message delivery ratios between real
experiment and simulation.

approach. Under heavier traffic, this choice might have
substantial impact [TMB01]. For the propagation model,
we chose 2.8 as the distance path-loss exponent and 6 dB
as the shadow fading log normal standard. These values,
which must be different for different types of terrain, pro-
duce signal propagation distances consistent with our ob-
servations from the real network. Finally, for the 802.11
model, we chose parameters that match the settings of our
real wireless cards.

Table2 shows the difference in the overall message de-
livery ratio (MDR)—which is the total number of mes-
sages received by the application layer divided by the total
number of messages generated—between the real exper-
iment and the simulation. This propagation model pro-
duced relatively good results: the relative errors in pre-
dicted MDR were within 10% for all three routing pro-
tocols tested. We caution, however, that one cannot ex-
pect consistent results when generalizing this stochastic
radio propagation model to deal with all network scenar-
ios. After all, this model assumes some of the axioms we
have identified, including flat earth, omni-directional ra-
dio propagation, and symmetry. In situations where such
assumptions are clearly mistaken—for example, in an ur-
ban area—we should expect the model to deviate further
from reality. Moreover, the real routing experiment pro-
vides a single reference point, and we do not have suffi-
cient data to assess the overall effectiveness of the model
under different network conditions.

On the other hand, since the model produced good re-
sults amenable to our particular outdoor experiment sce-
nario, we use it in this study as the baseline to quantify
the effect of the axioms on simulation studies. As we
show, the axiom assumptions can significantly undermine
the validity of the simulation results.

4.3 Simpler models

Next we weakened our simulator by introducing a sim-
pler signal propagation model. We used the distance
path-loss component from the previous model, but dis-
abled the variations in the signal receiving power intro-
duced by the stochastic processes. Note that these vari-
ations are a result of two distinct random distributions:
one for small-scale fading and the other for shadow fad-
ing. The free-space model, the two-ray ground reflection

model, and the generic distance path-loss model with a
given exponent—all used commonly by wireless network
researchers—differ primarily in the maximum distance
that a signal can travel. For example, if we assume that
the signal transmission power is 15 dBm and the receiv-
ing threshold is -81 dBm, the free-space model has a max-
imum range of 604 meters, the two-ray ground reflection
model a range of 251 meters, and the generic path-loss
model (with an exponent of 2.8) a range of only 97 me-
ters. Indeed, we found that the receiving range plays an
important role in ad hoc routing: longer distance short-
ens the data path and can drastically change the routing
maintenance cost [LYN+04].

In this study, we chose to use the two-ray ground re-
flection model since its signal travel distance matches ob-
servations from the real experiment.15 This weaker model
assumes Axiom 4: “If I can hear you at all, I can hear
you perfectly,” and specifically the testable axiom “The
reception probability distribution over distance exhibits a
sharp cliff.” Without variations in the radio channel, all
signals travel the same distance, and successful reception
is subject only to the state of interference at the receiver.
In other words, the signals can be received successfully
with probability 1 as long as no collision occurs during
reception.

Finally, we consider a third model that further weak-
ens the simulator by assuming that the radio propagation
channel isperfect. That is, if the distance between the
sender and the recipient is below a certain threshold, the
signal is received successfully with probability 1; other-
wise the signal is always lost. The perfect-channel model
represents an extreme case where the wireless network
model introduces no packet loss from interference or col-
lision, and the reception decision is based solely on dis-
tance. To simulate this effect, we bypassed the IEEE
802.11 protocol layer within each node and replaced it
with a simple protocol layer that calculates signal recep-
tion based only on the transmission distance.

4.4 The results

First, we look at the reception ratio of the beacon mes-
sages, which were periodically sent via broadcasts by the
beacon service program on each node. We calculate the
reception ratio by inspecting the entries in the beacon
logs, just as we did for the real experiment. Figure22
plots the beacon reception ratios during the execution of
the AODV routing protocol. The choice of routing pro-
tocol is unimportant in this study since we are comparing

15When we consider the full experiment field, which provides pos-
sible reception ranges of over 500 meters, we see almost no receptions
beyond 250 meters. The 251-meter range of the 2-ray model is computed
from a well-known formula, using a fixed transmit power (15 dBm) and
antenna height (1.0 meter).
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Figure 22: The beacon reception ratio at different dis-
tances between the sender and the receiver. The proba-
bility for each distance bucket is plotted as a point at the
midpoint of its bucket; this format is easier to read than
the boxes used in earlier plots.

the results between the real experiment and simulations.
We understand that the control messages used by the rout-
ing protocol may slightly skew the beacon reception ratio
due to the competition at the wireless channel.

Compared with the two simple models, our best model
is a better fit for the real experiment results. It does, how-
ever, slightly inflate the reception ratios at shorter dis-
tances and underestimate them at longer distances. More
important for this study is the dramatic difference we saw
when signal power variations were not included in the
propagation model. The figure shows a sharp cliff in
the beacon reception ratio curve: the quality of the radio
channel changed abruptly from relatively good reception
to zero reception as soon as the distance threshold was
crossed. The phenomenon is more prominent for the per-
fect channel model. Since the model had no interference
and collision effects, the reception ratio was 100% within
the propagation range.

Next, we examine the effect of different simulation
models on the overall performance of the routing proto-
cols. Figures23–25show the message delivery ratios, for
the three ad hoc routing algorithms, as we varied the appli-
cation traffic intensity by adjusting the average message
inter-arrival time at each node. Note the logarithmic scale
for thex-axes in the plots. The real experiment’s result is
represented by a single point in each plot.

Figures23–25show that the performance of routing al-
gorithms predicted by different simulation models varied
dramatically. For AODV and APRL, both simple models
exaggerated the message delivery ratiosignificantly. In
those models, the simulated wireless channel was much
more resilient to errors than the real network, since there
were no spatial or temporal fluctuations in signal power.
Without variations, the transmissions had a much higher
chance to be successfully received, and in turn, there were
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Figure 23: Message delivery ratios for AODV.
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Figure 24: Message delivery ratios for APRL.

fewer route invalidations, and more packets were able to
find routers to their intended destinations. The perfor-
mance of the perfect-channel model remained insensitive
to the traffic load since the model did not include collision
and interference calculations at the receiver, explaining
the divergence of the two simple models as the traffic load
increases. For ODMRP, we cannot make a clear distinc-
tion between the performance of the best model and of the
no-variation model. One possible cause is that ODMRP
is a multicast algorithm and has a more stringent band-
width demand than the strictly unicast protocols. A route
invalidation in ODMRP triggers an aggressive route re-
discovery process, and could cause significant packet loss
under any of the models.

In summary, the assumptions embedded inside the
wireless network model have a great effect on the sim-
ulation results. On the one hand, our best wireless net-
work model assumes some of the axioms, yet the results
do not differ significantly from the real experiment results.
On the other hand, one must be extremely careful when
assuming some of the axioms. If we had held our ex-
periment in an environment with more hills or obstacles,
the simulation results would not have matched as well.
Even in this relatively flat environment, our study shows
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Figure 25: Message delivery ratios for ODMRP.

that proper modeling of the lossy characteristics of the ra-
dio channel has a significant impact on the routing pro-
tocol behaviors. For example, using our best model, one
can conclude from Figure23 and Figure25 that ODMRP
performed better than AODV with light traffic load (con-
sistent with real experiment), but that their performance
was comparable when the traffic was heavy. If we use the
model without variations, however, one might arrive at the
opposite conclusion, that AODV performed consistently
no worse than ODMRP. The ODMRP results are interest-
ing by themselves, since the packet-delivery degradation
as the traffic load increases is more than might be expected
for an algorithm designed to find redundant paths (through
the formation of appropriate forwarding groups). Bae has
shown, however, that significant degradation can occur as
intermediate nodes move, paths to targets are lost, and
route rediscovery competes with other traffic [BLG00]. In
addition, the node density was high enough that each for-
warding group could have included a significant fraction
of the nodes, leading to many transmitted copies of each
data packet. An exploration of this issue is left for future
work.

4.5 Further investigation

In the previous sections, we investigate the impact of as-
suming the axioms. We demonstrate that certain assump-
tions dramatically affect the results, and in some cases
even reverse the ranking of the algorithms being com-
pared. Accordingly, we conclude that simulation design-
ers should be wary of what assumptions they make in con-
structing their models. In this section we extend our inves-
tigation with a series of related simulation experiments.

Specifically, we combined three common radio prop-
agation models with the connectivity trace derived from
the outdoor experiment beacon logs, leading to six differ-
ent radio propagation models in simulation: three using
the connectivity traces and the other three not. In the first
three cases, we used the connectivity trace to determine

whether a packet from a mobile station could reach an-
other mobile station, and then we used the radio propaga-
tion models to determine the receiving power for the in-
terference calculation. Comparison of models with mea-
sured connectivity with those without give us a means of
refining a model’s power—if a model is seen to require
connectivity information to work well, it is not a robust
model because the power of prediction comes from mea-
surements. On the other hand if a model without mea-
sured connectivity information works about as well as
does the version with it, then the model itself contains ac-
curate predictive power for connectivity.

Recognizing that message delivery ratio is not the only
metric of interest to routing protocol designers, we also
describe the performance of our six models in generating
accurate hop count distributions.

We then investigate the sensitivity of two important
large-scale fading parameters: the distance path-loss ex-
ponent, and the standard deviation value for shadow fad-
ing. The choice of these parameters is often arbitrary in
simulation studies, and we maintain that these values are
important determinents of the environment being simu-
lated, and therefore should be selected and accounted for
with care.

The three models used in this further investigation—
generic propagation, two-ray ground reflection, and Friis
free-space—are similar, but not exactly the same as the
models used in quantifying the impact of the axioms.

Our generic propagation model is the same as the best
model from the axioms investigation. It uses the same
large-scale and small-scale fading models, and the same
parameter values for the distance path-loss exponent and
shadow-fading standard deviation. Similarly, the two-ray
ground reflection model is the same as the first weakening
of the axiom’s best model. It uses no shadow-fading or
small-scale fading, and is configured with the same path-
loss exponent as its axioms investigation equivalent.

The Friis free-space model, however, does differ from
the perfect channel model used previously. The perfect
model had no implementation of an 802.11 protocol, and
instead used only a simple distance threshold to model
packet reception. The Friis free-space model, on the other
hand, retains an implementation of the 802.11 protocol,
allowing for collisions and interference. And though it
assumes an ideal radio propagation condition—the signals
travel in a vacuum space without obstacles—the power
loss is proportional to the square of the distance between
the transmitter and the receiver. Because the Friis model
uses signal strength to calculate collisions, this use of a
path-loss exponent is a more complicated estimation of
radio behavior than the simple distance threshold used in
the perfect model.

We choose this slightly more complicated model for
this further investigation because the previous sections
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Figure 26: Comparing the message delivery ratio from
the real experiment with various radio propagation mod-
els. “With connectivity” means the connectivity trace was
used.

make it clear that the perfect model, without any compen-
sation for collisions or interference, grossly overestimates
protocol performance in all cases. The use of the Friis
free-space model in this experiment provides more inter-
esting results by allowing us to compare three more re-
lated approaches to estimating radio reception power over
time and distance.

It should also be noted that to further increase the sim-
ilarity between the simulated environment and the real
conditions, we modified the application traffic generator
to read the outdoor experiment application log and gen-
erate the same packets as in the real experiment. We
were unable to implement this feature in the axiom exper-
iments because we ran those simulations at various rates
of packet generation.

Results. We first examine the message delivery ratio.
Figure26 shows the message delivery ratio from the real
experiment and the simulation runs with six radio propa-
gation models (three of which used the connectivity trace
derived from the real experiment to determine the reacha-
bility of the signals). Each simulation result is an average
of five runs; the variance is insignificant and therefore not
shown.

These results verify many of the conclusions reached
in the previous simulation experiment. For example, the
generic propagation model, with typical parameters, of-
fers an acceptable prediction of the routing algorithm per-
formance. Different propagation models predict vastly
different protocol behaviors, and these differences are
non-uniform across the algorithms tested. For three algo-
rithms, the two-ray ground reflection and free-space mod-
els both exaggerate the PDR, whereas ODMRP perfor-
mance was underestimated.

More important is what we observe by comparing the
models with connectivity traces to those without. The
propagation models that used the connectivity trace in
general lower the message delivery ratio, when compar-
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Figure 27: The hop-count histogram of AODV in real ex-
periment and in simulation.

ing with the propagation models that do not use the con-
nectivity trace. This result is not surprising: the connec-
tivity trace, to some degree, can represent the peculiar ra-
dio propagation scenario of the test environment. In our
experiment, there were significant elevation changes in
the test field that led to the obstruction of radio signals
between laptops that were close by in distance. With-
out connectivity traces, the propagation model assumes
an omni-directional path loss dependent only on the dis-
tance, which resulted in a more connected network (fewer
hops) and therefore better delivery ratio.

Of course, the message delivery ratio does not reflect
the entire execution environment of the routing algorithm.
From the routing event logs, we collected statistics related
to each particular routing strategy. Figure27 shows a
histogram of the number of hops that a data packet tra-
versed in AODV, before it either reached its destination or
dropped along the path. For example, a hop count of zero
means that the packet was dropped at the source node;
a hop count of one means the packet went one hop: ei-
ther the destination was its neighbor or the packet failed
to reach the next hop. The figure shows the fraction of
the data packets that traveled in the given number of hops.
As above, the free-space and two-ray models resulted in
fewer hops by exaggerating the transmission range. We
also see that the connectivity trace was helpful in predict-
ing the hop counts, which confirms that the problem with
the free-space and two-ray models using the connectivity
trace was that they did not consider packet losses due to
the variations in receiving signal power.

Finally, we take a look at the sensitivity of certain sim-
ulation parameters in the generic propagation model. The
exponent for the distance path loss and the standard de-
viation in log-normal distribution for the shadow fading
are heavily dependent on the environment under investi-
gation. In the next experiment, we ran a simulation with
the same number of mobile stations and with the same
traffic load as in the real experiment. Figure28 shows
AODV performance in packet delivery ratio, as we varied
the path-loss exponent from 2 to 4 and the shadow log-
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Figure 28: Sensitivity of the AODV protocol performance
to the parameters of the large-scale fading model.

normal standard deviation from 0 to 12 dB—the ranges
suggested by [Rap96] for radio modeling out-of-doors.

The AODV behavior was more sensitive to the path-
loss exponent than to the shadow standard deviation. That
is, the signal propagation distance had a stronger effect
on the algorithm’s performance. A shorter transmission
range means packets must travel through more hops (via
longer routes) before reaching its destination, and there-
fore has a higher probability to be dropped. A larger
shadow standard deviation caused the links to be more
unstable, but the effect varied. On the one hand, when
the path-loss exponent was small, the signals had a long
transmission range, so the small variation in the receiving
signal strength did not have a significant effect on routing,
causing only infrequent link breakage. On the other hand,
when the exponent was large, most nodes were discon-
nected. A variation in the receiving signal power helped
establish some routes that were impossible if not for the
signal power fluctuation. Between the extremes, a larger
variation in the link quality generally caused more trans-
mission failures, and therefore resulted in slightly lower
message delivery ratio.

The critical implication of this sensitivity study is that
we cannot just grab a set of large-scale fading parameters,
use them, and expect meaningful results for any specific
environment of interest. On the one hand, pre-simulation
empirical work to estimate path-loss characteristics might
be called for, if the point of the experiment is to quantify
behavior in a given environment. Alternatively, one may
require more complex radio models (such as ray tracing)
that include complex explicit representations of the do-
main of interest. On the other hand, if the objective is
to compare protocols, knowledge that the generic propa-
gation model is good lets us compare protocols using a
range of path-loss values. While this does notquantify
behavior, it may allow us to makequalitativeconclusions
about the protocols over a range of environments.

To summarize, this further investigation reaffirms our
earlier conclusion that it is critical to choose a proper

wireless model that reflects a real-world scenario for
studying the performance of ad hoc routing algorithms. In
contrast to earlier studies [TBTG01], we found that using
a simple stochastic radio propagation model with param-
eters typical to the outdoor environment can produce ac-
ceptable results. We must recognize, however, the results
are sensitive to these parameters. It is for this reason we
caution that the conclusions drawn from simulation stud-
ies using simple propagation models should apply only to
the environment they represent. The free-space model and
the two-ray model, which exaggerate the radio transmis-
sion range and ignore the variations in the receiving signal
power, can largely misrepresent the network conditions.

5 Conclusion

In recent years, dozens of Mobicom and Mobihoc papers
have presented simulation results for mobile ad hoc net-
works. The great majority of these papers rely on overly
simplistic assumptions of how radios work. Both widely
used radio models, “flat earth” andns-2 “802.11” mod-
els, embody the following set of axioms: the world is two
dimensional; a radio’s transmission area is roughly circu-
lar; all radios have equal range; if I can hear you, you can
hear me; if I can hear you at all, I can hear you perfectly;
and signal strength is a simple function of distance.

Others have noted that real radios and ad hoc networks
are much more complex than the simple models used
by most researchers [PJL02], and that these complexities
have a significant impact on the behavior of MANET pro-
tocols and algorithms [GKW+02]. In this study, we val-
idate the importance of this problem, and present results
and recommendations to help researchers generate more
reliable simulations.

We present the results of an unprecedented large-scale
outdoor experiment comparing in detail the performance
of four different ad hoc algorithms. We then enumerate
the set of common assumptions used in MANET research,
and use data from our real-world experiment to strongly
contradict these “axioms.” Finally, we describe a series
of simulation experiments that quantify the impact of as-
suming these axioms and validate a group of radio models
commonly used in ad hoc network research.

The results cast doubt on published simulation results
that implicitly rely on our identified assumptions, and pro-
vide guidance for designing and configuring more reliable
simulation models for use in future studies.

We conclude with a series of recommendations,
...for the MANET research community:

1. Choose your target environment carefully, clearly list
your assumptions about that environment, choose sim-
ulation models and conditions that match those as-
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sumptions, and report the results of the simulation in
the context of those assumptions and conditions.

2. Use a realistic stochastic model when verifying a pro-
tocol, or comparing a protocol to existing protocols.
Furthermore, any simulation should explore a range of
model parameters since the effect of these parameters
is not uniform across different protocols. Simple mod-
els are still useful for the initial exploration of a broad
range of design options, due to their efficiency.

3. Consider three-dimensional terrain, with moderate
hills and valleys, and corresponding radio propagation
effects. It would be helpful if the community agreed
on a few standard terrains for comparison purposes.

4. Include some fraction of asymmetric links (e.g., where
A can hearB but not vice versa) and some time-
varying fluctuations in whetherA’s packets can be
received byB or not. Here thens-2 “shadowing”
model may prove a good starting point.

5. Use real data as input to simulators, where possible.
For example, using our data as a static “snapshot” of a
realistic ad hoc wireless network with significant link
asymmetries, packet loss, elevated nodes with high
fan-in, and so forth, researchers could verify whether
their protocols form networks as expected, even in the
absence of mobility. The dataset also may be helpful in
the development of new, more realistic radio models.

6. Recognize that connectivity is easily overestimated in
simulation. Even the most realistic models used in
our experiments overestimated network connectivity as
compared to our real-world results. This observation is
especially important when validating or comparing a
protocol that depends on a certain minimum threshold
of network connections to perform effectively.

7. Avoid simple models, such as free-space or two-ray
ground reflection, when validating or comparing a pro-
tocol for which hop count is a vital component of its
performance. These models significantly exaggerate
transmission range, and subsequently lower hop counts
to an unrealistic level.

...for simulation and model designers:

1. Allow protocol designers to run the same code in the
simulator as they do in a real system [LYN+04], mak-
ing it easier to compare experimental and simulation
results.

2. Develop a simulation infrastructure that encourages the
exploration of a range of model parameters.

3. Develop a range of propagation models that suit differ-
ent environments, and clearly define the assumptions
underlying each model. Models encompassing both
physical and data-link layer need to be especially care-
ful.

4. Support the development of standard terrain and mo-
bility models, and formats for importing real terrain
data or mobility traces into the simulation.

...for protocol designers:

1. Consider carefully your assumptions of lower layers.
In our experimental results, we found that the success
of a transmission between radios depends on many fac-
tors (ground cover, antenna angles, human and phys-
ical obstructions, background noise, and competition
from other nodes), most of which cannot be accurately
modeled, predicted or detected at the speed necessary
to make per-packet routing decisions. A routing proto-
col that relies on an acknowledgement quickly mak-
ing it from the target to the source over the reverse
path, that assumes that beacons or other broadcast traf-
fic can be reliably received by most or all transmission-
range neighbors, or that uses an instantaneous measure
of link quality to make significant future decisions,
is likely to function significantly differently outdoors
than under simulation or indoor tests.

2. Develop protocols that adapt to environmental condi-
tions. In our simulation results, we found that the rel-
ative performance of two algorithms (such as AODV
and ODMRP) can change significantly, and even re-
verse, as simulation assumptions or model parameters
change. Although some assumptions may not signif-
icantly affect the agreement between the experimen-
tal and simulation results, others may introduce radi-
cal disagreement. For similar reasons, a routing proto-
col tested indoors may work very differently outdoors.
Designers should consider developing protocols that
make few assumptions about their environment, or are
able to adapt automatically to different environmental
conditions.

3. Explore the costs and benefits of control traffic. Both
our experimental and simulation results hint that there
is a tension between the control traffic needed to iden-
tify and use redundant paths and the interference that
this extra traffic introduces when the ad hoc routing
algorithm is trying to react to a change in node topol-
ogy. The importance of reducing interference versus
identifying redundant paths (or reacting quickly to a
path loss) might appear significantly different in real
experiments than under simple simulations, and pro-
tocol designers must consider carefully whether extra
control traffic is worth the interference price.

4. Use detailed simulation as a tool to aid the proto-
col design process. Modeling the effects of collisions
and highly variant transmission strengths may provide
some guidance for tailoring your protocol design to
more effectively avoid or adapt to destabilizing envi-
ronmental conditions.
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Availability. We will make our simulator and our
dataset available to the research community upon com-
pletion of a conference version of this paper. The dataset,
including the actual position and connectivity measure-
ments, would be valuable as input to future simula-
tion experiments. The simulator contains several radio-
propagation models.
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