Secure Context-sensitive Authorization

Kazuhiro Minami and David Kotz
Department of Computer Science, Dartmouth College
Hanover, NH, USA 03755
{minami, dfk} @cs.dartmouth.edu

Dartmouth Computer Science Technical Report TR2004-529
December 21, 2004

Abstract

There is arecent trend toward rule-based authorization systems to achieve flexible security policies. Also, new sens-
ing technologies in pervasive computing make it possible to define context-sensitive rules, such as “allow database
access only to staff who are currently located in the main office” However, these rules, or the facts that are needed
to verify authority, often involve sensitive context information. This paper presents a secure context-sensitive autho-
rization system that protects confidential information in facts or rules. Furthermore, our system allows multiple hosts
in a distributed environment to perform the evaluation of an authorization query in a collaborative way; we do not
need a universally trusted central host that maintains all the context information. The core of our approach is to
decompose a proof for making an authorization decision into a set of sub-proofs produced on multiple different hosts,
while preserving the integrity and confidentiality policies of the mutually untrusted principals operating these hosts.
We prove the correctness of our algorithm.

1 Introduction

Pervasive computing leads to an increased integration between the real world and the computational world. Many
such applications adapt to the user’s context, that is, the user’s situation and environment. We consider a class of
applications that wish to consider a user’'s context when deciding whether to authorize a user’s access to important
physical or information resources. Such a context-sensitive authorization scheme is necessary when a mobile user
moves across multiple administrative domains where they are not registered in advance. Also, users interacting with
their environment need a non-intrusive way to access resources, and clues about their context may be useful input into
authorization policies for these resources.

There are several rule-based authorization systén® 5, 10] that allow a resource owner or a manager to define
authorization rules that refer to the context of the requester. These existing context-sensitive authorization systems
have a central server that collects context information, and evaluates policies to make authorization decisions on
behalf of a resource owner. A centralized solution assumes that all resource owners trust the server to make correct
decisions, and all users trust the server not to disclose private context information. In many realistic applications
of pervasive computing, however, the resources, users, and sources of context information are inherently distributed
among many organizations that do not necessarily trust each other. Resource owners may not trust the integrity of
context information produced by another domain, and context sensors may not trust others with the confidentiality of
data they provide about users.

This project of the Center for Mobile Computing and the Institute for Security Technology Studies at Dartmouth College was supported under
Award No. 2000-DT-CX-K001 from the Office for Domestic Preparedness, U.S. Department of Homeland Security. Points of view in this document
are those of the author(s) and do not necessarily represent the official position of the U.S. Department of Homeland Security. A much shorter version
of the paper will appear at PerCom, March 8-12, 2005.

Query

‘ Query
Sub—proo
tree
Proof tree
Sub—proof
tree
Host A
Host C
(a) Centralized authorization server (b) Decentralized multiple authorization servers

Figure 1. Decentralized evaluation of an authorization query. The proof of a query is de-
composed into sub-proofs and produced on distributed multiple hosts. On the left, Host A
generates a whole proof on a centralized server. On the right, Host A, B, and C produce only a
subtree of the proof.

We propose a secure, distributed, context-sensitive rule-based authorization system. When a client requests access
to a resource, the resource owner constructs a logical statement (query) that, if proven TRUE, indicates that access
may be granted; otherwise access is denied. Although the resource’s host has a knowledge base containing rules
that represent authorization policies and facts about the users, it may not have all of the necessary information and
thus collaborates with other hosts to attempt to construct a proof for the query. Thus, rather than depending on a
central trusted server (Figutk), we decompose a proof into sub-proofs produced by multiple hosts (Figire
This collaboration is only possible if the querier can trust the integrity of other hosts (to provide correct facts and to
properly evaluate rules) and if the other hosts can trust the querier with confidential facts. We assume that these trust
relationships are defined Ipyincipals each of which represents a specific user or organization, and that each host is
associated with one principal (e.g., the owner of a PDA, or the manager of a server).

Our approach provides several benefits:

Confidentiality: Information used for making an authorization decision is protected according to access-control poli-
cies defined by the owner of that information.

Integrity: Proofs are evaluated by principals (hosts) that are trusted by the queriers.

Scalability: By distributing the knowledge base and proof construction we off-load work from a resource that may
have limited processing or communication capability.

In the following sections, we introduce our authorization rule language and how this language can define integrity
and confidentiality policies. Sectighdescribes our authorization system for the simpler case, where policies apply
only to facts. We describe the architecture of our system and introduce the concept of distributed processing for an
authorization query. We next describe our enforcement mechanism for confidentiality policies and give some key
algorithms for handling queries in a distributed way. We give an example application at the end of the section. In
Section5, we extend our model to support policies on rules, following the structure of the previous section. We
describe the representation of a proof and the algorithm that can verify the integrity of the proof. Squtimes
that our algorithm ensures the integrity and confidentiality policies of the principals constructing an arbitrary proof
tree. We discuss related work in SectiarSection8 covers some design issues and security properties in our system.
Section9 describes our current status and future work, and Setb@oncludes.

2 Background

In this section, we describe our language for defining authorization policies and introduce the concept of a proof
tree, which is constructed when evaluating an authorization query. We describe a few assumptions about the infras-
tructural services on which our authorization system depend.

2.1 Authorization rule language

In rule-based authorization systems, authorization policies are represented as logical expressions. We express
access-control policies with Horn clauses since they are expressive enough to support the rules in existing rule-based
authorization systemd][2, 5]. We do not use a general first-order logic, which is not decidable in general. The syntax
of a Horn clause i$ < aq A as ... A a,, Which says that simple statements cabédmsa, througha,,, if all true,
imply b. The atomb is called theheadthe clause, and the atoras, . . . , a,, thebodyof the clause. An atom is usually
used to state a fact. An atom is formed from a predicate symbol followed by a parenthesized list of variables and
constants. We can express the fact “Bob is in Hanovetbasgtion(Bob, Hanover), for example.

Example authorization rules. The teams responding to a large-scale disaster are coordinated by experts drawn from
multiple disciplines (fire, police, medical) and often multiple jurisdictions (city, state, federal). Increasingly, incident
commanders use software to assist with incident management and situational awareness. The National Incident Man-
agement Systen¥] defines clear roles for the many participants in a large-scale response, so role-based access control
(RBAC) [1]] is a natural basis for protecting resources in an incident management system (IMS). Such an IMS needs
to dynamically link people, resources, and information from multiple domains, providing information to those who
need it in a time of crisis.

Suppose that an incident occurs in an airport. There is a surveillance camera image server managed by the airport,
and the chief of operation®@b) wishes to use the camera images to improve his awareness of the situation.2Figure
shows a set of rules that define the airport’s policy to grant access to the camera resource, which allows the local police
chief access to the images whenever he is in the airport, as determined by either his Wi-Fi network connection or by
the GPS tracking device in his radio. Rule 1 says that prindipaiust hold the roleperationchief to be granted,
and rule 2 defines the two conditions to hold that role. The first condition specifies the prerequigitelicelehief
in a police department, and the second requires prinéiaal be in the airport. Rules 3-5 specify how we derive the
location of principalP from the raw location information of a device.

2.2 Proof tree

To make an authorization decision, we must check whether a proof tree for tyuenyt(P) can be constructed or
not with a given set of rules and facts. The proof tree consists of nodes that represent rules (or facts) and edges that
represent the unification of the atom in the body of the rule in a parent node with the head of the rule in a child node.
Every leaf node contains a fact that has no atom in its body.

Given the facts listed in Figur® we can construct the proof tree shown in Fig8tey unifying the query with the
first four rules, substituting variables as needed. We return to this example in Secéamnsl5.6 to explain how we
construct this proof in a distributed fashion.

3 Security policies

Each principal definesonfidentiality policieso protect information in its knowledge base. It also definésgrity
policiesto specify whether it believes that evaluation results or rules received from other principals are correct.

3.1 Rule patterns

We first introduce the notion atile patterns which are mechanisms for expressing these security policies in our
security model. A rule pattern is just a regular Horn clause to be unified with a rule or a fact in the knowledge base.
A rule pattern is used to define a policy for any rules or facts that match it throoiflcation a pattern-matching
process that makes a rule pattern and an actual rule in the knowledge base identical by instantiating variables in

Rules:

grant(P) <« role(P,operationchief) Q)
role(P, operationchiefy — roleIn(P, policechief police.depy A location(P, airport) 2
location(P,L) « owner(P, D) Alocation(D, L) 3
location(D,L) «— wifi(D,A)Nin(A,L) (4)
location(D,L) «— gps(D,X,Y) AcloseTo(X,Y,L) (5)
Facts:
roleIn(bob, police_chief police.dep). Bob is chief of the local police department. (6)
owner(bob, pdalb) Bob owns device pdal5 @)
wi fi(pdalb, ap39). pdal5 is associated with access point ap39. (8)
in(ap39, airport). Access point ap39 is at the airport. 9)

Figure 2. Sample set of rules. We use uppercase for variables and lowercase for constants
and names.

?grant(bob)

grant(bob) « role(bob, operation_chief)

role(bob, operation_chief) «— roleIn(bob, police_chief, police_dept) A location(bob, airport)

roleIn(bob, police_chief, police_dept) location(bob, airport) < owner(bob, pdal5) A location(pdal’, airport)
owner(bob, pdal5) location(pdalb, airport) «— wi fi(pdalb, ap39) A in(ap39, airport)
wi fi(pdalb, ap39) in(ap39, airport)

Figure 3. Example proof tree based on the rules in Figure 2.

the rule pattern. For example, the rule pattéseution(bob, X) is matched with the fadiocation(bob, hanover)
in the knowledge base, because the variablean be instantiated thanover. It does not match with the fact
location(alice, hanover), however. The rule patterle(X,Y') «— occupation(X,Y) Alocation(X, hospital) can
be matched with the rulevle(P, physician) < occupation(P, physician) A location(P, hospital) by instantiating
X to P andY to physician.

A principal may define as many security policies as it sees fit to define. Each security (pplityis represented
as a rule patternp and a set of trusted principals

3.2 Integrity policies

Integrity policies express trust in the correctness of rules and facts. When a prinailgdines the integrity policy
(rp, t) it means thap; trusts those principals ity which we often denoterust;(rp), to be correct in whatever rules
or facts match patterrp. We use subscriptin the trust policy to denote which principal defines the policy.

The integrity of a fact means that the boolean value representing a fact is correct. For example, if principal
includes principap; inits trusty(loc(P, X)), then principap, believes thap,’s evaluation (true or false) of a location
query of the form?loc(P, X) (e.g.,?loc(bob, hanover)) is correct. On the other hand, the integrity of a rule means
that the rule itself is able to correctly derive a new fact. For example, if prinpipaicludes principap; in its rule
patterntrusty(loc(P, X) «— WiFi(P,Y)Ain(Y, X)), thenp, believes thap,'s ruleloc(bob, X') < WiFi(bob, Y) A
in(Y, X) is a correct rule to resolve the query of the fotinc(bob, hanover). In other words, principab, believes
that the queryoc(bob, hanover) is replaced with two sub-queri@¥ViFi(bob, Y') and?in(Y, hanover). Principalpg
can verify that principap; applied the rule correctly to derive the conclusion by checking the proof as we describe in
Section5.1

Notice that trust on a fact is a stronger notion than trust on a rule. Trust on a fact implicitly trusts the rules used to
derive that fact. For example, the trust on the rule pattetiX, Y) implicitly indicates trust of any rule whose head
can be unified withoc(X,Y).

3.3 Confidentiality policies

Confidentiality policies protect facts and rules in a principal’s knowledge base. A fact must be protected if it
contains confidential information. A rule must be protected if confidential information may be inferred from reading
the rule. For example, the rulg-ant(P) < loc(bob, sudikoff) says that any principaP is granted access whénb
is at the location osudikoff building. If a request is granted, the requester may infer that bob is at Sudikoff, which
might not be public knowledge.

When a principap; defines the confidentiality policyrp, ¢), it means thap;, trusts those principals ity which we
often refer to as the access control tist; (rp), with facts or rules matching rule patterp. Principalp, only responds
to a queryq from principalp, if there exists a rule patternrp that can be unified with the queryand principalp;
belongs toacly(rp). For example, suppose that principal defines the policy:cly(location(bob, L)) = {p1,p2};
principal py responds to a queriocation(bob, hanover) from principalp;, because rule pattedocation(bob, L)
matches witHocation(bob, hanover).

3.4 Security models

In this paper we make a few assumptions to maintain our focus on the confidentiality and integrity issues in dis-
tributed context-sensitive authorization systems. First, the integrity policies of each principal are public knowledge.
Second, a public-key infrastructure is available and every principal can obtain the public key of other participants, so
that they can establish secure channels with a session key and verify the authenticity of messages with digital signa-
tures. Third, we assume that there is a directory service that knows which principal handles what types of queries.

We consider two security models in the following sections of this paper. The first model only supports security
policies on facts, and the second model supports security policies on facts and rules. We call the firsbesie the
model, and the second one thetendednodel. We first consider authorization on the basic model in Sedtiand
then discuss authorization on the extended model in SeBtion

Host

Logical Host

: Query
Authorization -
Request uer : Host
q% Service Query : Host

Host
\ Howt

Figure 4. Architectural overview. The hosts enclosed in the dotted lines make an authorization
decision in a collaborative way.

4 Authorization on the basic security model
In this section, we describe our authorization system based on the basic security model.
4.1 Architecture

With no central server to make authorization decisions, we use multiple hosts that are administered by different
principals. Without loss of generality, we assume that eachiiestdministered by a different principa), although
in many realistic environments there may be principals that own or manage many hosts. Each host stores a local
copy of its principal’s integrity and confidentiality policies. Each host provides an interface for handling queries from
remote hosts, and may ask other hosts to resolve any subqueries necessary. 14, Bigiser sends a request to the
server that provides some service, and the server issues an authorization query to a host it chooses in order to make a
granting decision.

The structure of a host is shown in FiglseThe query handler handles queries from other hosts and enforces the
local confidentiality policies. The inference engine constructs a proof tree for a given query based on the rules and facts
in the local knowledge base. If some query cannot be evaluated locally, the inference engine issues a remote query to
another host through the query issuer. The query issuer refers to its local integrity policies to choose a principal whose
evaluation of the query is trusted; the integrity policies serve as a directory service to choose a principal to which it
sends a query. The query issuer receives a response and checks its integrity based on the integrity policies. The event
handler converts events that contain new context information into corresponding facts and updates the knowledge base;
these events may be delivered by a context-dissemination service such agsolar [

4.2 Proof object

The response to a query igpeoof object represented &g,., n, (value)k,), wherep,. is a receiver principal. The
proof object contains a noneethat is attached with the query to prevent replay attacks by an adversary that is capable
of intercepting the encrypted messages between principals. We omit the field of ammontee proof object for
brevity in the following discussion. Thealue is a query result, which is a boolean valuERUE or FALSB, a
conjunction of boolean values, or the vaR&JECT The valueREJECTis used when a given query is not handled
because the querier principal does not satisfy the handler principal’s confidentiality policies. Otherwise, the handler
principal constructs a proof tree locally, then includes the query’s reBRIE or FALSE in the proof object. (We
name the returned objectpaoof objectbecause, in the extended model, it contains a proof tree that shows how the
query result is derived.) The receiver principal might not be the principal that issues querywe explain why,

Query Query

Query I ; Query
nference engine)
Proof tree handler & issuer Proof tree

Confidentiality { Knowledge base } Integrity

policies policies

add/delete facts

Event handler

Context events

Figure 5. Structure of a host.

below), and, therefore, the name of the receiver principal needs to be included in the proof object, so that the receiver
principal can decrypt an encrypted value. The value must be encrypted with receiver printsmmalblic key K. to
enforce the confidentiality policies of the publisher principal.

A principal py that handles query, might issue subqueries to other principals, and the returned proofs from those
principals might contain encrypted query results that princigatannot decrypt. Therefore, the quepys result
depends on the encrypted values in the proofs for the subquerigg tissues, and principaly returns a proof for
qgueryqg that contains the query results for the subqueries as follows. Suppose that prigdgsales subqueries
fori =0,...,n—1, and receives severpf, = (p,(;, (value;)k, ,,) Wherep,;, is the receiver principal of the proof,
value; is the queryg;’s result, andk, ;) is principalp, ;s public key. The queryy’s result isTRUEonly if py can
verify thatvalue; is TRUEfor all 7 in the proof. If anypf, ;) (for which r(i) = 0) is FALSE p, returns a simple proof
(pr, (FALSB g,). Otherwise, if there are some subproofs fhiatannot decrypt (becausé:) # 0), then principal
returns the proofp,., (IL; (pr(;), (value;) i, ;) k,) forall (i) # 0, as a response to quegy. The proof contains the
concatenated subproofs encrypted with public kg&y The query result of the proof iIBRUEIf the conjunction of all
thevalue; (i.e., \;(value;)) is TRUE

4.3 Decomposition of a proof tree

When a querier issues a query to a principal that the querier trusts with the integrity of evaluating the query, the
principal that handles the query only returns a proof that contains the query’s FERUE(FALSE or REJECT),
and the proof tree that derives the query’s result does not have to be disclosed to the querier. If multiple principals
are involved in processing a query, no single principal obtains all the rules and facts in the proof tree of the original
query. Instead, the proof tree for the query is decomposed into mudtipteeesvaluated by different principals in a
distributed environment.

Figure 6 shows that the proof tree for quegy is constructed by principaly, p1, andps in a distributed way.
Principalpg receives queryy, and issues subquery to principalp; to construct a proof tre&y, and principalp;
similarly issues querys to principalp, to construct a proof tre®;. The facts or rules in the proof tre&g, 77, and
T, are not disclosed to other principals; the result of evaluating each proof tree is returned to the querier as a boolean
value or conjunction of encrypted boolean values.

Example. Figure 7 shows the proofs in the evaluation of the quégrant(bob), involving p1, p. and ps.
The query ?grant(bob) from principal py to p; is decomposed into two sub-queri@sole(bob, doctor) and
?location(bob, hospital) according to the ruleule; = grant(X) « role(X, doctor) A location(X, hospital), and
those subqueries are handled by principandps respectively. Principal, has the matching faeble(bob, doctor)
in its knowledge base and returns the prdpf, TRUE) to principal p;. Principal ps also returns the proof

‘ Query go

Principal pg $

Proof tree T
0 Node ng

Q1

Proof tree T}
ny Q

q2

Proof tree T,

Figure 6. Decomposed proof tree. Principals pg,p1,and ps construct a proof tree for query ¢o
in a distributed way. Nodes ny and n; are leaf nodes of proof trees T, and 77 respectively.
Principal pg that handles query ¢q issues query ¢; to principal p; to obtain the fact in node ny,
and principal p; similarly issues query ¢ to principal ps.

(p1, TRUE). Principalp; trusts the integrity of the proofs from, andp; according to its integrity policies, and
internally constructs the proof tree that contains the rulk; as a root node and the faatsle(bob, doctor) and
location(bob, hospital) as its children nodes. Principal concludes that the statememtunt(bob) is trueand returns
the proof(po, TRUE).

4.4 Enforcement of confidentiality policies

The enforcement of each principal’s confidentiality policies is different from that in many existing authorization
systems, which check the privileges of a requester principal before divulging information directly to the requester. In
our system, a principal that publishes a proof chooses the receiver of the proof from a list of upstream principals in the
whole proof tree. The principal may make that choice because its confidentiality policy does not allow it to divulge
the information to the querier, but may allow the information to be released to another principal further up the tree.
The encrypted result will become part of the querier’s proof/response up the tree; eventually the receiver principal may
decrypt the result and compute the conjunction to see whether the trae.is

We formally define the ordered list of upstream principals as follows. We say that a prireppagents proof-tree
node when a rule or a fact contained in that node is published by that principal. We denote the principal that represents
noden asrep(n), and the ordered list of principals that represent a corresponding ordered list of snastes(s).
Suppose that principal represents a nodein a proof tree. We denote the ordered list of nodes on the path from the
root of the proof tree ta, excludingn, asupstream_nodes(n). That is, the nodes are ordered from the root node
downward.

The list of upstream principals fgris defined agep(upstream_nodes(n)), which we denote ageceivers(p). In
Figure8, principalpy’s issuing queryy, causes principalg; andps to issue subquerieg, g> andgs. Principalps’s
list receivers(ps) is < po, p1,p2 >, for example.

When a publisher principal chooses a receiver from the-tistivers(p), the receiver must satisfy the following
two conditions. First, it must satisfy the publisher’s confidentiality policies. For example, suppose that pgncipal
choose®; as the receiver of quemry'’s result. Principap; must satisfyp,’s confidentiality policies for querys; that

Security policies

po [o trust(grant(P)) = {p1}
|
(po, TRUE) | ?grant(bob)
| Knowledge base / Security policies
: Coruley :
i L trust(role(P, doctor)) = {ps}
T trust(location(P, L)) = {ps}
| I
(p1,TRUE) ! \ (p1, TRUE)
?role(bob, doctor) 2location(bob, hospital)

: Knowledge base K‘pgwlgdggbasg S

‘i role(bob, doctor) : locatzon(bobhoep?fal)

rule; = grant(P) < role(P, doctor) A location(P, hospital)

Figure 7. Example of distributed query processing. The solid arrows are labeled with queries
and the dashed arrows are labeled with returned proofs. The rounded rectangles with dotted
lines represent the knowledge bases and security policies of those principals respectively. The
definition of rule; is enclosed in the rectangle at the bottom of the figure.

q2

Pp3

pfy = (po, (values))

d0 Q1
Po p1 b2
ph = (po, ((pfs)) o) ph = (p1, ((pfs) (Pf)) k)
a3

P4

pfi = (p1, (values),)

Figure 8. Enforcement of confidentiality policies. Principal po'S query qq is handled by principals

p1,D2,p3, and py in a distributed way. Principal p; handles query ¢;_, and returns the proof pf;,
for i =1to 4.

is, p4 must have confidentiality polic§rp, t) where rule patternp matches querys and principalp; belongs to a set
of principalst.

Second, the receiver principal must satisfy the constraints due to recursive encryption of a proof at each princi-
pal. A principal that handles a query might issue subqueries to other principals. If that principal cannot decrypt the
query results in those subproofs, it includes the subproofs into its proof and encrypts them with the public key of a
receiver principal. This recursive encryption is necessary to prevent a untrusted intermediate principal on the path
towards the receiver from knowing the query result by decrypting some subproof whose query HesuBEs Be-
cause such embedded encrypted subproofs are encrypted recursively by intermediate principals until they reach their
receiving principals, the intermediate principals have to make sure that their encryption on embedded subproofs are
decrypted when the proof reaches the receiving principals of the subproofs. Otherwise, the embedded subproofs pass
the receiving principals without being decrypted, and the proof fails.

In Figure8, principalps choosey, as the receiver of progif; = (po, (values) i,) Wherevalues is querygs's
result andK, is py's public key, andp, choose, as the receiver of progif,. Principalp, embeds those proofs
from p3 andp, into proof pf,, becausep, cannot decrypt those proofs. Suppose that both pringipand p; in
receivers(ps) satisfy the first condition; they satisfy’s confidentiality policies for query;. Principalps must
choosep; as the receiver to satisfy the second condition. Because pringigcrypts and evaluates the prauf,
p1 only embed®f; into proofpf,, which is decrypted by principab, if the evaluation opf, is TRUE (Otherwisep,
drops the proopf; and return a proof that containd=ALSEvalue.) If principalp, choosegy as the receiver of proof
pf, instead, the proabf,, which is embedded in progf,, is forwarded ta, without being decrypted by, and the
proof is not usable by.

In general, a proof contains any number of encrypted subproofs. Suppose that pririsipsd receivers(p;) is
< po, - --,Pi—1 >, andp; returns proopf; that contains subproofs; for j = 0,...,n — 1 to principalpy. Letp,
be the receiver principal for progf., andindex(p, s) be the function that returnss index in the ordered list. The
second condition for selecting a receiver is stated as follows.

Vj ((index(py(j), receivers(p;)) < index(py, receivers(p;))) V (r(j) = i)

If there is more than one principal that satisfies the above two conditions, pripgigadlooses the principal of the
minimum index (closest to the root). This guideline is important not to narrow the choices of the receivers made
by the upstream principals. Note that the proof fails if the path to the root does not permit these decryptions and
validations; the failure results because the integrity and confidentiality policies of the principals involved will not
allow the necessary information sharing.

4.5 Algorithms
Each host (run by some principal) provides an interfas8DLE REMOTEQUERY for handling a query from a re-
mote host. It takes as parameters a query styjrglist of upstream principal®ceiversdefined in Sectiod.4, and

a querier principal’s integrity policiespolicies. The functionHANDLEREMOTEQUERY calls the functionGENER-
ATEPROOFt0 obtain a proof.

10

Figure9 shows the algorithm for the functicdBENERATEPROOF, run onp;’s host to build a proof while enforcing
confidentiality policies of the handler principal. The function takes several parameters: pripdipat issues a query,
principalp; that handles a query, a query stripaa list of upstream principalseceivers for py (i.e.,receivers(py)),
po’s integrity policiesi_policiesg, p1's integrity policiesi_policiesy, p1's confidentiality policies:_policies;, andp;’s
knowledge bas& B, .

Line 2 checks whether there is any principal in thetisteivers that satisfies the handler principal's confiden-
tiality policies. The principals that belong to the intersectiomafeivers and the union of the access-control lists in
p1's confidentiality policies for query are eligible to receive a proof fromy . We treat the ordered listeceivers as
a setin line 2, and denote the result set.al there is no such principal (i.e., the seis empty), line 4 returns a proof
with aREJECTvalue to querier principal.

Line 5 sets the receiver principal of a proof in the case that the query result in the proof is obtained locally. The
chosen receiver is that principal that belongs todisind has the minimum index in the ordered tisteivers. We
choose that principal witminIndex(s, receivers) in line 5.

Line 7 checks whether the handler principalsatisfies the querign’s integrity policies (we use the symbdl to
denote “such as” in our algorithm for brevity). If not, line 8 returns a proof wi\BSEvalue to principap,.. Line 9
checks whether query matches facyf in p;’s knowledge base. If so, line 10 returns a proof witiRUE value to

principal p,..

Lines 11-19 cover the case that quemnpatches the head of rutein p;’s knowledge base. Line 12 unifies query
gandruler = A «— By, ..., B,, resulting in the instantiated rul¢’ — By’ ..., B, . Lines 13-14 obtain subproofs
for the subquerie®3,’, ..., B, iteratively. If principal p; can decrypt all the values in the subproofs, and all the

subproofs contain aRUE value, then line 16 returns a proof withT&RRUE value to principalp,.. Line 17 checks
whether the subproofs decryptedycontain aflRUEvalue, and if so, line 18 checks whether there is some principal
p, that satisfies the constraint due to the recursive encryption we describe in Skdtitmt is, p,.’s index in the
ordered listreceivers must be greater than or equal to the indexfy in receivers if (i) # 1. If there is such a
principalp,, line 19 returns a proof containing the subproofs whose values could not be decrypteditlyprincipal

p, as the recipient.

When lines 7-19 fail to construct a proof that derives qugryur algorithm does not return a proof that contains
FALSEimmediately. Instead, it tries to obtain a proof from a remote principal in lines 21-25. Line 21 checks whether
there is any principap; that satisfiep,'s integrity policies for query;. If that holds true, line 22 appengs into the
ordered listreceivers, and line 23 calls the functiorsSUEREMOTEQUERY. Line 24 returns the returned proof. If
line 21 fails to find such a principaj, then line 25 returns a proof withBALSEvalue.

4.6 Example application

Consider again our initial example of an incident management system (IMS) shown in Bjgareentralized
server would produce the proof tree in FigieFigure10 shows how uselbob (principal pg) requests images from
the surveillance camera image server managed by the airport (pripgipal Bob’s request is handled by multiple
principalsp1, po, - . ., p7. In Figurel0, every principal issues queries to the principals that satisfy its integrity policies,
and every querier except for principal satisfies the confidentiality policies of the principals to which it sends the
queries. Principap, does not satisfy,’s confidentiality policies for querylocation(bob, airport), becausep,
is temporarily assigned to manage the role server for the incident, and thus princigads not establish a long-
term trust relation with principab,. Fortunately,p; that runs the surveillance camera image server satigfies
confidentiality policies, principal, encrypts the query result wigh’s public key, and principgb, embedg,’s proof
into its own proof, then returns it to,. Principalp; decrypts the query result in the proof frgig, but it is not aware
of the fact that the query result is created by princjpal

5 Authorization on the extended security model

In this section, we extend our authorization scheme so that it supports security policies on rules as well as on
facts. A proof contains a proof tree that describes the derivation of the query’s result if the evaluation of a query
is true, instead of simply the resuliRUE, in order to satisfy a querier principal’s integrity policies. This situation
occurs when the querier principal does not trust the integrity of the query result from the handler principal, but trusts
handler’s rule that is used to decompose the query into subqueries. We describe the integrity of a proof tree, the

11

GENERATEPROORpy, p1, ¢, receivers, i_policiesy, i_policiesy , c_policies, K By)

1

2
3
4
5
6
7
8

©

10
11
12
13
14

15
16
17
18

19
20
21
22

24
25

> Check whether there is any principaliaceivers that satisfiep,’s confidentiality policies
s «— receivers N (|, t;) for all policies(rp;, t;) € c_policies; whererp; matches;
if s = 01> if setsis empty.
then return (po, (REJECT)k,)
pr < minIndex (s, receivers)
> Check whether principal, satisfies queriep,’s integrity policies
if =(3 policy p = (rp,t) | ((p € i_policiesy) A (rp matches)) A (py € t)))
then return (p,, (FALSB k)
if 3factf | ((f € KB1) A (f matchesy))
then return (p,., (TRUB) k)
elseif3ruler = A «— By,...,B, | ((r € KBy) A (A matches)))
thenunify gandA «— By, ..., B,, resultinginA’ — By',..., B’
fori— 1lton
do pf, < GENERATEPROOH1, p1, By, receivers, i_policiesy , i_policiesy, c_policiesy, K By)
wherepf; = (p,.(;), (value;)k, ;)), andr(i) is a receiver principal off;
if Vi ((pfi = (p1, (value;)k,)) A (value; = TRUB)
then return (p,, (TRUE k)
elseifVi ((pf; = (pr(iy, (valuei)k, ,)) A (((r(7) # 1) vV ((r(7) = 1) A (value; = TRUE))))
thenif 3 p,. | (Vi (((pr € 5) A (index(p, (), receivers) < index(p,, receivers)) A (r(i) # 1))
V(r(i) = 1))
then return (p,, (IT; pf;) k)
for all i wherepf; = (p,(s), (valuei)r,) A (r(i) # 1)
> If we fail to construct a proof that derives the query locally, we try to obtain a proof from a remote principal.
if 3 principalp; (3 policy p = (rp, t) ((p € i-policiesi) A (rp matchesy) A (p; € t)))
then appendp; to receivers
proof < ISSUEREMOTEQUERY(py, g, receivers, i_policiesy)
return proof
else return(p,, (FALSBk.,)

Figure 9. Algorithm for generating a proof.

12

?grant(bob)

: role(bob, police_chie f, police_dept) L
"acl(role(P, R, police_dept)) = {p1,p2} !

| owner(bob, pdal) | location(D, L) « in(A,L) ANwifi(D, A)
: acl(owner(P, D)) = {ps} Fo- 7 in(ap39, airport)
L . acl(location(D, L)) = {ps}

' wifi(pdals, ap39)
i acl(wifi(D,L)) = {ps}

Figure 10. Example of an emergency response system. Principal po is a first responder whose
role is “operation _chief”. Principal p; represents a surveillance camera image server. Principal

po is the role membership server of an incident management system (IMS). Principal ps3 is the
role membership server of a police department. Principal p4 represents a location-tracking
service. The arrows represent the flow of queries among the principals. Each arrow is labeled

with a query and a returned proof. The query is shown above the dashed line; the proof is
shown below the line. Each principal’s rules, facts and confidentiality policies are shown in a
dashed rectangle.

13

representation of the proof that contains a proof tree, and the enforcement mechanisms for confidentiality and integrity
policies respectively.

5.1 Integrity of a proof tree

A principal trusts the integrity of a proof tree (that is, believes its result) for a query if it is consistent with its
integrity policies. We formally define the integrity of a proof tree from the viewpoint of an initial querier pringjpal
inductively as follows. Suppose that principglissues a query to principalp; .

Base case (single-node tree)f the proof from principalp; contains a query’s result, and principapy has an in-
tegrity policy (rp, t) such that rule patterrp matches query andp; belongs to the set of principalsthenp,
trusts the results of the proof tree.

Induction step: If the proof fromp; contains a proof tree whose root node represents arfulee head of rule:
matches query, po has an integrity policyrp,) such that rule patterrp matches- andp; belongs to the set
of principalst, andp, trusts the integrity of the subproof trees under the root node representtmenp, trusts
the proof tree.

5.2 Representation of a proof

We represent aroof using nested parentheses based on the grammar in Hijufeproof contains five fields: a
sender principal, a receiver principal, a query, a nonce, and a proof tree optionally encrypted for a receiver. The sender
is the principal that publishes a proof, and the receiver is the intended receiver of the proof. The query is a query string
for which the proof is constructed, the nonce is a random number chosen by a querier principal, and the proof tree
represents how the evaluation result for the query is derived.

The hierarchical structure of a proof tree is built by embedding subproofs into a proof recursively. That is, the
proof contains a proof tree that consists of a root node (representing a rule) of the proof tree and the subproofs that
contain the subproof trees under the root node. Therefore, each node in a proof tree described 12 Sdwioa
corresponding proof (or an embedded subproof) that contains it as the root node of its proof tree. If a proof contains a
single-node proof tree, it only contains a query result or a set of proofs whose query results are encrypted as described
in Section4.4. The digital signature of a proof is attached with the proof so that a receiver principal can check its
authenticity.

The first four fields in a proof are necessary to verify the integrity of its proof tree. The sender’s identity is necessary
to check the authenticity of a proof by checking a digital signature attached with the proof. To verify a proof, one must
verify the integrity of all the embedded subproofs in that proof, which are published by different principals. Therefore,
every principal that publishes the subproof needs to attach a digital signature with it. We omit the digital signature of
a proof from our syntax in Figurgl for brevity. The receiver’s identity is necessary when a proof tree is encrypted by
the receiver’s public key as we discuss in Secdof The nonce is necessary to prevent a malicious principal from
reusing a proof for an identical query at an earlier time.

When we verify the integrity of the query result in a proof, we check the principal that signs the proof. However,
when we also verify the integrity of a rule in a proof, we check the principal that defines that rule. That principal may
be different from the one that applies the rule to handle a query. Therefore, the rule is paired with the principal that
defines it so that the principal that receives a proof can obtain the digitally signed certificate of that rule separately to
check the integrity of the rule.

Example. The example in Figur&2is a modification of Figur@. Principalpy has different integrity policies, and,
as a result, principgh, returns a proof that contains a proof tree. Principatoes not trust the integrity of; to
evaluate the querygrant(bod), but does trust the integrity ofule;. Principalp; constructs a proof that consists of
the rulerule; as a root node and the sub-propfeo fo andproofs as leaf nodes and returns it to principgl The
proof tree constructed by principg] is trusted by principapy because principal, trustsrule; in principal p; and
the factsrole(bob, doctor) andlocation(bob, hospital) in principalsp, andps respectively, according to its integrity
policies.

14

< proofs >

< proof >

< proof tree >
< sender >

< receiver >
< query >

< atom >

< predicate >
< args >
<arg >

< nonce >

< rule_cert >
< rule >

< head >

< body >

< signer >

< value_pairs >
< value_pair >
< wvalue >

< identifier >
< string >

< character >
< number >

< digit >

Figure 11. Grammar for a proof.
publishing proof, and optionally encrypts the

< proof > (< proof >) %
‘(" < sender >, < receiver >, < query >, < nonce >, < proof tree > ")’
‘(" <rule_cert >,'(" <proofs>"')") | <proofs> | <waluepairs > | <value >

< identifier >

< identifier >

? < atom >

< predicate > ‘(" < args >")

< identi frer >
<arg>(,<arg>)x*

< identifier >

< number >

‘(" < rule >, < signer >")’

< head >+ < body >

< atom >

< atom > (A < atom >) *

< identifier >

< value_pair > (< value_pair >) %
‘(" < receiver >, < value > ")’
‘TRUE’ |'FALSE' |'REJECT’
< string >

< string >< character > | < character >
al...|z|A|...|Z]0]1|2|3|4]|5]6]7|8|9
< number >< digit > | < digit >
0]1]2/3|4/5|6]7|8|9

digital signatures and encryptions from our syntax.

15

A sender principal attaches a digital signature with its
proof treefield of a proof. We, however, omit the

Security policies

Po . trust(role(P, doctor)) = {p2}
! trustllocation(P L) ={psk .
|
1, Do, Tgrant(bod), (ruley, (proofs, proofs))) | ?grant(bob)
|
|
LY Knowledgebase ...
pLo i ruley = grant(P) — role(P, doctor) A location(P, hospital)

777777 ol bob.doctor) D3 ;.-lacatian(bob7 hospital)

Figure 12. Construction of a proof tree. The solid arrows are labeled with queries and the
dashed arrows are labeled with returned proof trees. The rounded rectangles with dotted lines

represent the knowledge bases or security policies of those principals respectively. We omit

nonce and digital signatures in the proofs for brevity.

5.3 Decomposition of proof trees.

In our extended security model, a response to a query is a proof that contains a proof tree that satisfies the integrity
policies of a querier. If the integrity of the principal that handles a query is trusted by the querier, it only returns a
single-node proof tree that contains a query result. If there are such principals participating in evaluating a query, the
whole proof tree is decomposed into several subtrees and is evaluated by those principals in a distributed way. The
facts and rules used for evaluating a subtree do not have to be disclosed to a querier principal.

In Figurel3, principalspg, p1, . . . , p1g are the participants in evaluating a query, and each arrow shows how a proof
tree flows from one principal to another. We show only the fields for a sender and a receiver principals for brevity,
omitting other fields. The dashed lines show which principal’s integrity policies are applied to the principals enclosed
in the lines. Because principg} trusts principaps andps in terms of the integrity of the given queries; it is possible
to evaluate the query at, po, andps rather than collecting all the rules and facta@tPrincipalsp, andps construct
a proof tree locally based on their own integrity policies, and return only a single-node proof tree that contains a query
result. Therefore, principal, does not know how the query results frgmandps are derived.

5.4 Enforcement of confidentiality policies

We apply the same mechanism for enforcing confidentiality policies in Sedtibrirhe only difference is that a
receiver principal must be an upstream principal that evaluates a proof subtree. We, therefore, define a set of principals
receivers(p) whose members are eligible to receive princigalproof as follows.

Suppose that in a proof tree there is a sequence of nagdes, . . ., n; on the path from the root, to noden; in
the proof tree, and principal represents node; and handles quenry;_; from p;_; fori = 1 to k. Principalp; where
i < k belongs to the seteceivers(py,) if it satisfies either of the following two conditions.

e Principalp; is po.

e Principalp; belongs tareceivers(py), p; has an integrity policyrp, t) such that rule patterrp matches query
gi—1 andp; belongs to the set of principatsand there is no other principg} (wherel < j < 1), that satisfies

16

p3’s integrity policies p2’s integrity policies

Figure 13. Example of subproofs. Principals po, - - -,p1o are the participants in evaluating a
guery. Each arrow shows how a proof tree flows from one principal to another. Each arrow is
labeled with the pair of a sender and a receiver principals in a proof, omitting the other fields of

the proof for brevity. The dashed lines show which principal’s integrity policies are applied to

the principals enclosed in the lines. The principals Do, p2, and ps that represent the root node
of the nested subtrees are enclosed in the thick rectangles.

this condition.

Notice that our new definition does not change the definitioreafivers(p) in Sectiond.4, because every principal
issues a query to a principal that it trusts in terms of the integrity of evaluating the query. That is, if a querier principal
pi—1 IN receivers(p) issues query;—1 to p;, p; belongs toreceivers(p) as well because; satisfies the second
condition above. In other words, all the upstream principajs foélong to the seteceivers(p).

5.5 Algorithms

Each host provides the same remote interface for handling a remote query. We describe the extended version of the
function GENERATEPROOF, and then introduce the functilHECKPROOHNTEGRITY that checks the integrity of a
proof tree that contains rules as intermediate nodes.

Algorithm for constructing a proof. In Figure14, we extend the algorithm in Figu@eto support security policies
on rules. There are a few modifications as follows. First, the new function takes as an additional parameter a nonce
n to prevent replay attacks by an adversary. Second, a proof has additional fields such as a sender principal, a query
string, and a nonce according to the representation of a proof in S&cfioe use the parameter namers instead
of receivers for compactness.

Second, we handle the case that principals not trusted by, in terms of the evaluation of a query, but's
rule, which matches the query, is trusted by principgl in lines 21-27. Line 21 checks whether there is a rule
R = A+« By A...NA B, inp;'s knowledge base whose heddmatches query and querier principab, satisfies
p1's confidentiality policies for ruleR. If there is such ruleR, line 22 checks whether querigg has an integrity
policy p = (rp/,t') that trusts the integrity gb,’s rule R. Line 23 unifies query and ruleR resultingR’ = A’ «
Bi,...,B!.. Lines 24-25 obtain the proofs for the atod, . .., B/, iteratively. Line 26 checks whether there is a
receiver principap, in the set of principalscuvrs that satisfies the constraints due to recursive encryption described
in Section4.4. If that holds true, we return the proof that contains ridleas the root node of the proof tree, and the
proofs forBy, ..., B, as the subproofs under the root node. The proof tree must contain the proofs whose proof trees
are decrypted by, to satisfy the receiver principal’s integrity policies.

17

Third, whenever principgb; issues a remote query by calling the functissUEREMOTEQUERY in line 30, the
returned proof may contain a proof tree. Line 31 checks whether querier pripgipaists the integrity of the query
result from handler principal; by testing ifp; belongs tarcurs. If that holds true, principgb; checks the integrity
of the proof tree according to the definition of the integrity of a proof tree in Se&ibioy calling the function
CHECKPROOHNTEGRITY in line 32. If the proof tree satisfigs s integrity policies,p, returns the returned proof
from the functioncCHECKPROOHNTEGRITY in line 34. If the condition in line 31 does not hold, the proof returned
from the functionssSUEREMOTEQUERY is returned without checking its integrity.

Algorithm for checking the integrity of a proof. The functionCHECKPROOHNTEGRITY in Figure 15 checks
whether a proof satisfies given integrity policies, based on the definition given in SBcidn addition, the function
returns only a set of proofs that correspond to leaf nodes of the proof tree in the proof. All the intermediate nodes
are removed from the proof tree while checking the integrity of those nodes. It takes as parameters priticgial
checks the integrity of the proof, query stripgnoncen.., proofpf, andp.’s integrity policies:_policies..

Line 1 checks whether noneein the proofpf is same as the nongefor the query. If that is not true, line 2
returnsfalse with no proof tree. Line 3 checks whethgr trusts the integrity of principap,’s evaluating query
g. If that holds true, line 4 returnsue with the proof given as a parameter. Line 5 checks whether pringjpal
can decrypt the proof (i.e., principal- is a receiver principal of the progff) and read ruleR at the root of the
proof tree. Line 6 checks whether rutesigned by principap, satisfiesp.'s integrity policies. If that holds true,
lines 7-11 check whether all the proofs for the atoms of Rilgatisfiesp,.’s integrity policies by calling the function
CHECKPROOHNTEGRITY recursively. If all the proofs satisfy the integrity policies, line 11 returne with the proof
that contains the concatenation of the subproofs that correspond to the leaf nodes of the initial proof tree.

Notice that it is necessary for the principal that checks the integrity of a proof to be able to read all the rules in the
intermediate nodes of the proof tree.

5.6 Example application

We revisit the example of an incident management system (IMS); in Fifyrevery querier principal trusts the
integrity of the principal that handles its query in terms of the correctness of the query’s result. This time, we have
some principals that define security policies on rules as well as facts.

Figure 16 shows how useibob (principal py) requests images from the surveillance camera image server
managed by the airport (principal). Principal p; agrees with the policy for roleperation_chief, that is,
role(P, operation_chief) «— role(P, police_chief, police_dept) A in(P,airport) is correct, and principab, that
runs the role-membership server of IMS uses that rule to evaluate a gule(yob, operation_chief). However,
principalp; does not trust the answer from principal sincep, is temporarily assigned to manage the role server for
the incident, and thus principgl does not establish a long-term trust relation with principal Fortunately, princi-
pal p» trusts the role-membership server of the police department and the location tracking service run by principals
p3 andp, respectively, because those are long-running existing services. Pripgigathus able to return a proof
tree that contains the proofs from principglandp,, and principalp; trusts that proof. The proof tree also satisfies
the confidentiality policies of principals,, p3 andp,. Principalps only returns the evaluation result of the query
?location(bob, airport) because it belongs toust(location(P, L)) = {p4} defined by principap; .

6 Soundness of the algorithm

We show that our algorithm constructs a proof tree only if the confidentiality and integrity policies of every partic-
ipating principal are satisfiedWe give the proof for the extended model, which covers the basic model as its special
case. We separate the proof into two parts: the proof on confidentiality policies, and the proof on integrity policies.

6.1 Proof for confidentiality policies

We prove that our algorithm constructs a proof tree only if the confidentiality policies of every participating princi-
pal are satisfied by induction below.

1The other way (completeness of the algorithm) does not hold, as we discuss in 8ektand we leave it as our future work.

18

GENERATEPROOKpo, p1, ¢, N, rcurs, i_policiesg, i_policies , c_policiesy, K By)

O©CoO~NOOOUTA,WNPE

10
11
12
13
14

15
16
17

18

19

20
21

22
23
24
25

26

27
28
29
30
31
32
33
34
35
36

> Check whether there is any principahinvrs that satisfiep,’s confidentiality policies
s« rcvrs N (Y, t:) for all policies(rp;, t;) € c_policies; whererp; matchesy
if s =01 if setsis empty.
then return (p1, po, ¢, n, (REJECT k)
pr — minIndex (s, rcors)
> Check whether principal, satisfies queriep,’s integrity policies
if 3 policy p = (rp,t) | ((p € ipoliciesy) A (rp matchesy) A (p1 € t))
then appendp; to rcurs
if 3factf | ((f € KBy) A (f matcheg)))
then return (p1,pr,q,n, (TRUBK,)
elseif3ruler = A — By,...,B, | ((r € KB;1) A (A matches)))
thenunify g andA «— By, ..., B,, resulting inA’ — B},..., B},
fori« 1ton
do pf; < GENERATEPROOHR(p1, p1, B}, n, rcurs, i_policiesy, i_policiesy, c_policiesy, K By)
wherepf; = (ps(i)» Pr(i), Bis 1, (valuei)k,), and
s(i) andr(7) are sender and receiver principalgpfrespectively.
if Vi ((pf; = (ps(), p1, Bisn, (value;)i,)) A (value; = TRUE))
then return (p1, p, ¢, n, (TRUB k)
elseifVi ((pf; = (ps(iy> Pr(s), Bis n, (valuei) i,)
A(((r(2) # 1) vV (((r(2) = 1) A (value; = TRUB))))
thenif 3 p,v | (Vi (((pr € 5) A (index(ppiy, revrs) < index(py, revrs)) A (r(i) # 1))
V(r(i) = 1))
then return (plvpr/a q,1n, (Hl (p'r(z)v (valuei)Kr(i))K,,./)
for all i such thabf;, = (ps(), Pri), B 1, (valuei)k,) A (r(i) # 1)
> Construct a proof with a rule that satisfies principgl integrity policies ang,'s confidentiality policies.
if QruleR | (R€ KB))AN(R=A <« By A...AB,) AN(A matches))))
AT policy p | ((p € cpoliciesy) A (p = (rp,t)) A rp matches ruler)))
then if 3 policy p’ = (rp/,t') | ((p’ € i_policiesy) A (rp’ matchesR) A (py € t'))
then unify ¢ and ruleR resultingR’ = A’ — Bj,...,B),
fori«— 1ton
do pf, «— GENERATEPROORp1, p1, B}, n,rcurs, i_policies, i_policies,
c-policiesy, K By) wherepf; = (ps(), Pr(iy, Bi, n, (value;)k,), and
s(i) andr(4) are sender and receiver principalgpf
it Ip, | (Vi (((pr € 5) A (index(py), revrs) < index(p,, revrs)))
Ar@i) #1)) vV ((r(i) = 1) A (value; = TRUB)))
then return (p1,pr, ¢, n, (R, p.),11; pf;)) wherep, is a signer principal of rulg?
> If we fail to construct a proof that derives the query locally, we try to obtain a proof from a remote principal.
if 3 principalp; that is capable of handling quegy
then proof « ISSUEREMOTEQUERY(p;, q, rcurs, i_policiesy)
if p1 € reors
then (trusted, proof’) «— CHECKPROOHNTEGRITY(p1, ¢, n, proof,i_policies;)
if trusted
then return proof’
else returnproof
return (p1,pr, q,n, (FALSB,)

Figure 14. Algorithm for generating a proof.

19

CHECKPROOHNTEGRITY(p,, ¢, N, Pf, i_policies.)

1 if j((pf: (psameIvn’ (pt)KTv))/\(nc =n))
2 then return (false, NULL)
3 if (I policyp = (rp,t) | ((p € ipolicies.) A (rp matches query) A (ps € t)))
4 then return (true, pf)
5 elseif((r = ¢) A (pt= (R, pa), (I, Pf,))
whereR is a rule,p, is the signer principal oR, andpf, for i = 1 to n are subproofs.
6 then if 3 policy p = (rp,t) | ((p € i-policies.) A (rp matches ruleR) A (pq € t)
A(principalp. holds a valid digital signature faR signed byp,))
whereR=A« B A...ANB,
7 thenfori« 1ton
8 do (trust,pf!) = CHECKPROOHNTEGRITY(p,, B, pf;, i_policies.)
9 if —trust
10 then return (false, NULL)
11 return (true, (ps, pr, ¢, n, IL; pfl))
12 else return (false, NULL)

13 else return (false, NULL)

Figure 15. Algorithm for checking proof integrity.

Base case: We first show that our claim holds in the case of a single-node proof tree. Suppose that pgipcipal
makes query; to principalp;, andp;, which does not issue any subqueries, returns a proof whose proof tree only
contains a root node. We only need to show fh& confidentiality policies are satisfied, becapg&oes not disclose

any information in its knowledge base . To satisfyp,’s confidentiality policiesp; must have a confidentiality
policy (rp, t) such that rule patterrp matches query andp; belongs to the set The functionGENERATEPROOFIN
Figurel4ensures this condition in line 3. Therefore, principal&ndp; construct a proof only if their confidentiality
policies are satisfied.

Induction step: We next show that, if our claim holds for a proof tree whose depth is lesskthaen it also holds

for a proof tree of deptlk. (The base case above considers a tree of depth 0.) Without loss of generality, we consider
the case that a proof tree is linear. Because our algorithm for enforcing confidentiality policies on each node depends
only on the nodes on the path from that node to the root in a proof tree; the node is not aware of the existence of the
nodes in other branches of the proof tree.

Suppose that there is a linear tree of deptivhere nodes, ..., n, are ordered from the root to the leaf. Let
Do, - - - , P b€ the principals that represent nodgs. . . , n; respectively, andy, . . ., qx—1 be the queries, wherg
is the query byp; to p;;1. When principalp, issues queryy, to p;, we consider two cases in Figut&. In case 1,
only principalpy belongs to a set of principalgceivers(py) defined in Sectio®.4. In case 2, there are some other
principals in the seteccivers besides principahy.

We first consider case 1. Because principatioes not belong teeceivers(py), principalp, cannot distinguish
gueryq; issued by principap; from ¢; issued by principap, instead, because all the parameters in those queries
are same in both cases; the seteivers contains only principapy in both cases. The same can be observed for
p2,...,pk. In the latter case, by the induction hypothesis, our algorithm ensures that a proof tree foggqigery
constructed by principals,, . . . , py, if their confidentiality policies are satisfied. Because principals. . , p; do not
distinguish the former case from the latter, our algorithm ensures that their confidentiality policies are preserved in
the former case as well. The functicENERATEPROOF in Figure 14 ensures principgb;’s confidentiality policies
in lines 3. Principapy’s confidentiality policies are vacuously satisfied becaysgoes not disclose any information.

We, therefore, prove that our algorithm ensures the confidentiality policies of the pringipals, p, with a proof
tree of depthk in case 1.

We next consider case 2. Without loss of generality, we assume that there is a single ppincipateivers(py)
between principgby andp;.. There are two subcases to be considered. In the first, subcase 2a, pyincgratiecrypt
all the nodesu; 1, ..., ny in the proof tree for query;; that is, principal®;1,. .., pr choosep; as the receiver of

20

1 grant(P) <« role(P,operation_chief) 3
: trust(role(P, operation_chief) «— role(P,police_chief,police_dept)) = {p2} :
***** : trust(role(P, R, police_dept)) = {ps} :
| trust(iocation(P, L)) = {pi} 1

?grant(bob)

?roleln(bob, police_chie f, police_dept)

|
I location(P, L) «— owner(P, D) A location(D, L)
|

|

|

I

! 1 acl(location(P, L)) = {p1,p2} !
|

|

|

roleIn(bob, police_chief, police_dept)

: acl(role(P, R, police_dept)) = {‘zol,pz}‘r T ‘
|

=~ =7 trust(location(D, L)) = {ps}
|

location(D, L) «— in(A,L) Nwifi(D,A)
in(ap39, airport)

acl(location(D, L)) = {ps}
trust(wifi(D, L)) = {pz}

Figure 16. Example of an emergency response system. Principal po is a first responder whose
role is “operation _chief”. Principal p; represents a surveillance camera image server. Principal

p2 is the role membership server of an incident management system (IMS). Principal ps3 is the
role membership server of a police department. Principal p4 represents a location-tracking
service. The arrows represent the flow of queries among the principals. Each arrow is labeled

with a query and a returned proof tree. The query is shown above the dashed line; the proof

is shown below the line. Each principal’s rules, facts and policies are shown in a dashed
rectangle.

21

. qo ij q Qk—2 qr—1

Po P Pk—1 Pk

Case 1: Only principal py belongs to the set receivers(pg).

. qo0 : q1 qi-1 . q qr—2 : k-1 .
Po V41 Yz

Pr—-1 Pk

Case 2: Some intermediate principal p; belongs to the set receivers(py) as well.

Figure 17. Linear proof trees with and without an intermediate principal that belongs to the

set receivers. Black circles denote principals that belong to receivers, and white circles denote
principals that does not belong to receivers. Each circle is labeled with a principal name, and
each arrow is labeled with a query name.

their returning proofs. Because principals i, . . . , pr do not choose, from receivers(p;) = {po,pi} forj =1+1

to k as the receiver principal of their proofs respectively, their algorithm works in the same way as the case where
the setreceivers(p;) = {p} for j = [to k. Therefore, by the induction hypothesis, our algorithm ensures the
confidentiality policies op; 1, - . ., px. Because principal; returns a proof with a single-node proof tree, principals
Po,---,p1—1 are not aware of the fact that principal issues query;; for handling queryg;—;. Therefore, by the
induction hypothesis, our algorithm ensures the confidentiality policigg,of ., p;_1. Principalp;’s confidentiality
policies are also satisfied because our algorithm for enforcing confidentiality policigsveorks in the same way

as the case that; does not issue any subqueries and constructs a single-node proof tree responding t@_query
because there is no constraintgrdue to recursive encryption becaysean decrypt all the nodes in the proof from

p1+1 10 pi. Therefore, our claim holds for subcase 2a.

The second subcase 2b is that principatannot decrypt some nodes in the proof tree received fsom. If
principal p; cannot decrypt node,, betweenn; andn; (i.e.,l < m < k), the proof tree does not satisfy’s
integrity policies, and the proof fails. We, therefore, only consider the casg;tbatnot decrypt leaf node;, only.
When noden;, chooseg as a receiver principal, our algorithm for enforcing confidentiality policies works for nodes
ni,...,nE_1 in the same way as the case that nagds omitted (i.e., principap,_, does not issue query,_, to
pi) becausep,’s proof encrypted with principgby’s public key does not interfere with the processes of principals
p1,...,pk—1 for choosing a receiver principal of their proofs from the seteivers = {po, p;} or {po}. The depth
of the tree with node®,...,n;_1 is k — 1. Therefore, by the induction hypothesis, our algorithm ensures that
a proof tree is constructed only when the confidentiality policies of principals. ., p;_1 are satisfied. Principal
po’s confidentiality policies are satisfied vacuously, ant confidentiality policies of principgb, are also satisfied
because our algorithm gp, works in the same way as the case thatconstructs a proof tree of a single depth
responding to query_ issued by principapy. Therefore, our algorithm ensures that a proof tree is constructed
only when the confidentiality policies of every principal is satisfied. We cover all the cases in terms of confidentiality
policies and conclude the proof.

6.2 Proof for integrity policies

We prove that our algorithm constructs a proof tree only if the integrity policies of every participating principal are
satisfied by induction below.

22

Base case: We first show that our claim holds in the case of a single-node proof tree. Suppose that pgpcipal
makes queryj, to principalp;, andp;, which does not issue any subqueries, returns a single-node proof tree. We only
need to show thaty’s integrity policies are satisfied, becaysedoes not disclose any information in its knowledge
base. To satisfy,’s integrity policies,po must have an integrity policirp, t) such that rule patterrp matches query

g andp, belongs to set. Line 30 inpy’s function GENERATEPROOFin Figure14 obtains a proof fronp, by calling

the functionisSUEREMOTEQUERY, and line 31 in the function calls the functi@dECKPROOHNTEGRITY whose

line 3 ensures that the proof satisfies the above condition. Therefore, pringipatslp; construct a proof if their
integrity polices are satisfied.

Induction step: We next show that if our claim holds for a proof tree whose depth is lesgitttaen it also holds for

a proof tree of deptlk. We consider the case that a proof tree is linear as we do in Sécfiopecause we can check

the integrity of a proof tree by checking whether every path from the root to each leaf node satisfies given integrity
policies. (We omit the proof of this claim.) We assume the same linear proof tree in Seédtitmt is, there is a linear

tree of lengthk where nodes, . .., n; are ordered from the root to the leaf. L, ..., pr be the principals that
represent nodesy, . . ., ng respectively, ando, .. ., ¢x_1 be the queries as before. When principalssues queryy

to p1, we consider the same two cases in Figlire

We first consider case 1. Because principaldoes not belong to the setceivers(py), principal po cannot
distinguish queryy; issued by principap; from ¢; issued by principap, instead, because all the parameters in those
queries are same in both cases. In the latter case, by the induction hypothesis, our algorithm ensures that a proof tree for
gueryq; is constructed by principals;, . . . , py if their integrity policies are satisfied. Because princigals. . . , p
do not distinguish the former case from the latter, our algorithm ensures their integrity policies in the former case
as well. Principap; checks the integrity of the proof from principad in the same way regardless of whetheis
issuing queryy; is for handling queryy, or not. Therefore, by the induction hypothegig's integrity policies are
satisfied. Principgby checks the integrity of the proof from principa] with the functioncCHECKPROOHNTEGRITY
as follows. The integrity of the rule in nodg is ensured in line 6, and, by the induction hypothesis, the integrity of
the subtree of depth — 1 from principalp, is ensured in line 8 by checking the integrity of the proof tree whose root
node isny by calling the functioncHECKPROOHNTEGRITY recursively. Therefore, the function ensures thas
integrity policies are satisfied with the proof tree from nede We, therefore, prove that our algorithm ensures the
integrity policies of the principalsy, . . . , pr with a proof tree of deptl in case 1.

We next consider case 2. Without loss of generality, we assume that there is a pripdipatceivers between
principal py andp,. There are two subcases to be considered. In the first, subcase 2a, the subproof from principal
p; is a single-node proof tree that contains a query’s result. Pringipals. . ., pr choosep; as the receiver of their
nodes. Because principalg, ..., p;_1 are not aware of the fact that principal issues queryy;, by the induction
hypothesis, the integrity policies of principals, . . ., p;—1 are satisfied. The fact that principal belongs to the list
receivers(p;) of querygq does not change the behaviors of principals,, . . ., pr for handling queryy;. Because
our algorithm works for principalg,, ..., px in the same way that principal issues queryindependently, by the
induction hypothesis, our algorithm ensures that pringipalintegrity policies are satisfied for subcase 2a.

The second case 2-2 is that a proof from principatontains node:;, whose proof tree is encrypted with's
public key, as it could be done in line 19 of the functieBNERATEPROOF in Figure14. The proof fromp; does not
contain any other encrypted nodes becauyseeeds to read the nodeg, ,,...,n;—1 to check the integrity of the
proof fromp; ;. Principalp; checks whether the rules in nodes 1, . . ., ny_1 satisfieg,’s integrity policies, which
is done in line 6 of the functio®HECKPROOHNTEGRITY in Figure15. If principal p; cannot decrypt all the nodes
nia1,---,Nk—1, pr returns a proof that contaifsALSE because its failure to check the integrity of the proof, and,
therefore, the proof tree for quegy is not constructed. Because principads. . ., p;—1 cannot distinguish whether
the encrypted boolean value in the proof frpmis generated by principal; or its descendant principal., by the
induction hypothesis, our algorithm ensures that the integrity polices of pringipals. ,p;_; are satisfied ifpg
accepts a proof tree whose leaf nogecontains an encrypted boolean value in nage

We next consider the integrity policies of principals. . ., px. In order for principap; to check the integrity of the
proof from principalp;11, p; must read all the intermediate nodes 1, ..., nx_1 in that proof. Therefore, principals
Di+1,- -+, Pk—1 Must choose, as the receiver principal of their returning proofs. Principal, ..., pr—1 works in
the same way as the case that princjgabksues query; without receivingy;_; so, by the induction hypothesis, their
integrity policies are preserved. Princigal's integrity policies are satisfied vacuously. Principg$ algorithm for
enforcing integrity policies does not read the encrypted value in ngdend works in the same way regardless of
returning a proof te,_; or not. Therefore, by the induction hypothesiss integrity policies are also preserved. We

23

cover all the cases and conclude the proof.

7 Related work

Although others have developed context-sensitive authorization systems, they all use a trusted central context server
that collects context information, and they do not address the protection of context information used in authorization
rules or facts. Cerberug][allows principals to define context-sensitive policies based on first-order logic. It expresses
context information with context predicates such as “Location” and “Temperature”, similar to our approach. Cerberus
has a monolithic context infrastructure that contains current and historical context information, and a single inference
engine evaluates all the authorization decisions. Generalized RBAC (GRBAG) iptroduces the environmental
role (ERole) to achieve context-aware authorization. Their approach is based on the concept of Role-based access-
control (RBAC). Constraints on environmental (context) variables can be defined with a Prolog-like logic language.
Authorization is based on an ordinary role and an ERole; in effect, the ERole is an additional condition to be satisfied
for an authorization decision. GRBAC has a central context management service that maintains a snapshot of current
environmental conditions. OASI2,[6] is an RBAC system that can evaluate contextual conditions at both role-
activation time and access time. The context conditions are expressed as context predicates in the Horn clauses of
role-activation rules. OASIS has a centralized object-relational database that stores context predicatestlOMyles [
provides a XML-based authorization language for defining privacy policies that protect users’ location information.
Users must trust a set of validators that collect context information and make authorization decisions.

SD3 [8] is an inference engine for a trust management system that constructs a proof tree for a given query so
that the querier can verify the correctness of the query result. Its focus is to retrieve certificates (that correspond to
facts in a knowledge base) from remote hosts automatically, and a whole proof tree is constructed on a central server.
Therefore, all the remote hosts must trust the central server to preserve the confidentiality policies of their facts.

The idea of delegating the evaluation of a proof to a trusted server also appears in some protocols used to verify a
certificate in a public-key infrastructure. To verify a certificate, one must construct a certificate chain from the certifi-
cate authority (CA) that issued the certificate to a CA that is trusted by a querier. The Simple Certificate Validation
Protocol (SCVP) 9] allows a client with limited processing and communication capabilities to ask a trusted server
about the validity of a certificate. The client can specify a list of trusted CAs in its validation policy to be observed by
the server. The client can ask the server to provide additional information, such as a certification path and correspond-
ing revocation status, depending on the trustworthiness of the server. Although it is similar to our work in the sense
that the protocol uses the client’s trust in the server to split the overhead of verifying a certificate between them, it is
specialized in handling certificate chains, and it does not support general rules. In addition, there is no mechanism that
addresses the confidentiality of rules or facts, because cross certificates (trust relations) among CAs are considered to
be public knowledge.

8 Discussion

In this section, we discuss several design issues and security properties of our system.
8.1 Completeness of our algorithm

The algorithm of the functioGENERATEPROOF in Figure9 and Figurel4 is not complete. That is, it does not
guarantee to find a proof that derives a granting decision, because when the function finds a proof that contains
encrypted subproofs from other principals, it stops searching other proofs. If the returned proof turns out to be invalid
because some encrypted subproofs derfaése or because the evaluation is impossible due to tight integrity or
confidentiality policies, our algorithm fails to find a possibly existing proof with other combination of rules and facts.
To address this problem, we need to modify our algorithm so that it continues to search for another proof from the
point of the search space where a previous proof is found.

8.2 Security assurance

Our authorization scheme ensures that each principal’s confidentiality policies are preserved while participating
in the evaluation of an authorization query. A malicious principal that represents an internal node of a proof subtree

24

cannot obtain a rule or a fact from other principals by modifyingréeeiverdist in a subquery it issues, because each
principal discloses its rules or facts to other principals only if they satisfy its confidentiality policies as described in
Section6.1

The malicious principal could also modify the integrity policigzoliciesin a subquery to disturb the evaluation of
a query. This attack can be prevented if every principal publishes its integrity policies with its digital signature on a
well-known server, and each principal can cache other principal’s integrity policies.gdleiesin a query can then
be retrieved by identifying the principal specified by the last index of-theivers list.

We use a nonce to prevent a reply attack by a malicious principal that is capable of intercepting and modifying a
message. All the participating principals that evaluate an authorization query use the same nonce because the receiver
of a proof might be different from a querier principal. The nonce in a proof must match the nonce in the query, for the
proof to be valid.

8.3 Complexity of policy definition

Although it seems difficult for each principal to define confidentiality and integrity policies for rules and facts, it is
possible for a principal to refer to the policies of other principals to reduce the administrative work for defining policies.
For example, principgby could define a meta-rule that says “if principaltrusts the integrity of the evaluation of a
queryq by principalpy, thenp, trustsq in the same way.” This meta-rule would allow most users to defer on many
policies to a trusted administrator, for example.

9 Current status and future work

Our current prototype system is implemented in Java, by extending XPti#pwith a feature to construct a proof
for a query instead of simply evaluating the query and returning a result. We plan to deploy our current implementation
in realistic large-scale applications and to evaluate the performance and scalability of our system.

10 Summary

We describe a secure context-sensitive authorization system that supports the decentralized construction and evalu-
ation of authorization decisions, involving multiple principals from different administrative domains, and respects the
confidentiality and integrity policies of each principal involved.

We define our security model based on the notiorutd# patternghat allow each principal to define confidentiality
and integrity policies on the rules and facts in its knowledge base. Because our system evaluates an authorization
guery on multiple evaluation nodes in a distributed way, it is possible for each principal to choose to which principal it
is willing to disclose the information needed to evaluate the authorization query. We describe our key algorithms and
prove that our algorithms guarantee that the proof for an authorization query is constructed only if the security policies
of each participating principals are satisfied.

References

[1] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and D. Mickunas. Cerberus: a context-aware security scheme for smart spaces.
In Proceedings of the First IEEE International Conference on Pervasive Computing and Communjqadigpes 489—496.
IEEE Computer Society, March 2003.

[2] J.Bacon, K. Moody, and W. Yao. A model of OASIS role-based access control and its support for active $&oaegdings
of the sixth ACM Symposium on Access Control Models and Technolb@g492-540, 2002.

[3] G. Chen, M. Li, and D. Kotz. Design and implementation of a large-scale context fusion netwofkrstiinnual In-
ternational Conference on Mobile and Ubiquitous Systems: Networking and Services (Mobiquitmes 246—255, Aug.
2004.

[4] M. J. Covington, M. Ahamad, and S. Srinivasan. A security architecture for context-aware applications. Technical Report
GIT-CC-01-12, Georgia Institute of Technology, May 2001.

[5] M. J. Covington, W. Long, S. Srinivasan, A. K. Dey, M. Ahamad, and G. D. Abowd. Securing context-aware applications
using environment roles. IRroceedings of the Sixth ACM Symposium on Access Control Models and Technqlages
10-20. ACM Press, 2001.

25

(6]
(7]
(8]
9]

[10]
[11]

[12]

J. A. Hine, W. Yao, J. Bacon, and K. Moody. An architecture for distributed OASIS servicd&IRMCM International
Conference on Distributed Systems Platforpegges 104-120. Springer-Verlag New York, Inc., April 2000.

National incident management system (coordination draft), 2004://www.dhs.gov/dhspublic/interweb/
assetlibrary/NIMS-90-web.pdf

T. Jim. SD3: A trust management system with certified evaluatiofrrdéceedings of the IEEE Symposium on Security and
Privacy, pages 106—-115. IEEE Computer Society, 2001.

A. Malpani, R. Housley, and T. Freeman. Simple certificate validation protocol (SCVP). Internet Draft, draft-ietf-pkix-scvp-
14.txt, April 2004. http://www.oasis-open.org/committees/download.php/2406/oasis-xamcl-1.

O.pdf .

G. Myles, A. Friday, and N. Davies. Preserving privacy in environments with location-based appliciBisPervasive
Computing 2(1):56—-64, January-March 2003.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access controllEBEeBomputer29(2):38—

47, Feb 1996.

J. Vaucher. XProlog.java: the successor to Winikoff's WProlog, Feb 2008p://www.iro.umontreal.ca/
~vaucher/XProlog/AA _README

26

http://www.dhs.gov/dhspublic/interweb/assetlibrary/NIMS-90-web.pdf
http://www.dhs.gov/dhspublic/interweb/assetlibrary/NIMS-90-web.pdf
http://www.oasis-open.org/committees/download.php/2406/oasis-xamcl-1.0.pdf
http://www.oasis-open.org/committees/download.php/2406/oasis-xamcl-1.0.pdf
http://www.iro.umontreal.ca/~vaucher/XProlog/AA_README
http://www.iro.umontreal.ca/~vaucher/XProlog/AA_README

	Introduction
	Background
	Authorization rule language
	Proof tree

	Security policies
	Rule patterns
	Integrity policies
	Confidentiality policies
	Security models

	Authorization on the basic security model
	Architecture
	Proof object
	Decomposition of a proof tree
	Enforcement of confidentiality policies
	Algorithms
	Example application

	Authorization on the extended security model
	Integrity of a proof tree
	Representation of a proof
	Decomposition of proof trees.
	Enforcement of confidentiality policies
	Algorithms
	Example application

	Soundness of the algorithm
	Proof for confidentiality policies
	Proof for integrity policies

	Related work
	Discussion
	Completeness of our algorithm
	Security assurance
	Complexity of policy definition

	Current status and future work
	Summary

