
1

Role Definition Language (RDL):
A Language to Describe Context-Aware Roles

Chris Masone
Chris.Masone@dartmouth.edu

Senior Honors Thesis
Advisor: David Kotz

May 31, 2002

Dartmouth College Technical Report TR2002-426

Abstract
As wireless networks become more prevalent, a widening array of

computational resources becomes available to the mobile user. Since not
all users should have unrestricted access to these resources, a method of
access control must be devised. In a context-aware environment, context
information can be used to supplement more conventional password-based
access control systems. We believe the best way to achieve this is through
the use of Context-Aware Role-Based Access Control, a model in which
permissions are assigned to entities called roles, each principal is a

member of one or more roles, and a role’s membership is determined
using context information. We designed and implemented RDL (Role-
Definition Language), a simple, expressive and somewhat extensible
programming language to facilitate the description of roles in terms of
context information.

1 Introduction

Wireless data connectivity is increasingly available to a widening array of devices and in many

more places. As more and more users go wireless, it will make more and more sense to make

resources, both computational and otherwise, available to them when they are mobile.

Networked devices, such as printers or webcams, could be made available as well as less

traditional non-computational resources, such as X-101 enabled lights or stereos. Not all users

deserve access to every resource at all times, however; in many cases the set of users deserving

access depends on the context of the users or of the resource. Static access control would be

inappropriate; access should be determined dynamically, in response to changes in the current

1 http://www.x10.org

2

context. Context is the situation of the user and devices involved, as well as the surrounding

environment. Others have suggested using Context-Aware Role-Based Access Control to

implement this behavior. Instead of assigning permissions to a given principal, permissions are

assigned to a separate entity called a role, and then principals are swapped in and out of this role

based on context information [3,4]. This approach requires some way to define the conditions

that must be met for a principal to become a member of a given role, as well as some

infrastructure to collect the necessary context information. For the latter, we propose to use

Guanling Chen's Solar system [1], which delivers context information as a stream of events to

subscribing entities. For the former, we propose Role-Description Language (RDL), a simple

programming language that allows one to write a piece of software that receives context events

and, based on programmer-defined conditions, outputs the members of each known role. Any

role-based access-control system can then enforce limits on resource access, using rules defined

in terms of these roles. Figure 1 demonstrates the place of RDL software in an RBAC system.

An RDL program receives events from Solar and uses them to determine role membership.

In the next section of this paper, we provide necessary background information about

Solar and RBAC. In Section 3, we provide a description of the syntax and semantics of RDL,

followed by an evaluation of the language in Section 4. Section 5 discusses our current

implementation of an RDL compiler, explaining the high points of our design and the tools we

used. In Section 6 we discuss related projects and their relationship to RDL, and finally, in

Section 7, we discuss potential extensions to RDL and improvements to our compiler.

2 Background

RDL cannot be understood without some knowledge of the Solar system and RBAC.

2.1 The Solar System
We use the Solar system [1] to collect and operate on context information. The Solar

system is an event-oriented software infrastructure that allows the details of sensor data to be

abstracted away from applications using that data. It also supports the transformation and

aggregation of data as it travels from the sensors to the application.

access
requests

access
decisions

role
membership

eventsSolar
RDL

Program

Database

RBAC
Engine

Rules

Figure 1: Illustration of a theoretical RBAC system, using Solar and RDL-generated programs

3

Solar uses an operator-graph abstraction, in which sensors are modeled as sources, and

applications as sinks. Each source publishes a stream of events containing context information,

and the operator nodes in the graph between a source and a sink can operate on the incoming

streams of events to generate a new stream of events for output. Sources, applications, and

operators are all Java objects. The RDL compiler produces several Java files that the programmer

compiles and deploys as nodes onto the Solar framework.

Figure 2 shows a simple Solar operator graph. The two location sensors generate raw

sensor data and publish event streams to which the Merger subscribes. The Merger publishes a

new event stream containing all the events it receives from both location sensors. The

Transformer subscribes to this new stream, and changes the data of each event in some way,

perhaps mapping a sensor number to a room name. The application then subscribes to the

resulting event stream. This approach abstracts the details of the sensor data, and allows

extensible pre-processing of the events delivered to the application. RDL programs are like Solar

applications, receiving events already processed into the necessary format.

2.2 Role-Based Access Control (RBAC)
The basis of RBAC is the concept of a role [2]. A role is a mechanism for grouping

subjects (as principals are referred to in RBAC literature) based on properties of the subject.

Since RBAC is commonly used in corporate settings, such properties usually include job title or

user responsibilities, such as Financial Director, or a more descriptive classification like people

allowed to sign purchase orders. Permissions in an RBAC system are associated with roles, and

then subjects are assigned to roles. Thus, RBAC provides a layer of indirection allowing a

security administrator to avoid managing subjects and their permissions individually. In a system

where subjects need to change permissions often, this is a much more convenient way to view

access control. Roles are similar to groups, a common entity in access control, and groups can be

used to implement roles, but there is a conceptual difference between the two. A subject may be

a member of many groups, and have all the permissions associated with all those groups. A

subject may also be a member of many roles, but not all of the roles may be simultaneously

active. The subject only has the permissions afforded by his active roles. Some systems

constrain the user such that he can only activate one role at a time, thus enforcing a "separation of

duties" principle.

Figure 2: Simple sample Solar operator graph.

ApplicationLocation
sensor 1

Location
sensor 2

Merger Transformer

4

3 RDL Semantics

Conceptually, RDL-produced software works like a state machine. Events arrive, event

handlers use the events to update the "state of the world", and then roles are defined in terms of

this state. We chose this model because it works nicely with our role-definition syntax, which is

based on mathematical set notation. When one defines a set in mathematics, one assumes that the

"state of the world" is known; in our case, that state can change, and the set may change with it.

So, we allow a set to be defined in terms of conditional statements about the state of the world

and then track the state and update the set whenever the state changes.

We chose mathematical set notation for our role-definition syntax because it is familiar,

which enhances RDL's ease of use. We use an SQL database to store the state of the world

because, in many cases, the compiler can pass conditional statements from the programmer's role

definitions straight through to the database. Additionally, SQL "join" operations make supporting

existentially quantified variables, one of RDL's most important features, nearly trivial. Some

other projects [4] have chosen to model their state as a series of Prolog facts and then use a

Prolog-like syntax to define their roles. We feel that SQL and mathematical set notation are

familiar to more people than Prolog, and therefore make RDL easier to use than a Prolog-based

language.

The rest of RDL is also designed to be similar to familiar languages, most notably C and

SQL. We also maximize expressivity by pairing RDL with Solar. Thus, the programmer can

write some set of Solar operators and build a tree that transforms raw sensor data into a useful

format. Then, he can use RDL to write a program that receives events from the Solar tree, stores

the information in a database, and define roles through queries on the database. This approach

adds the functionality of a query-style interface to context information without the scaling

problems inherent in an approach that stores all raw sensor data in a large central database and

performing queries on that. By using Solar to distill the data into the most appropriate form

possible before storing it into a database, we reduce space requirements and move all the

complicated data reduction out into the network.

Compiling an RDL program produces several Solar operators that are then deployed onto

the Solar framework along with whatever subscription tree is required to generate the events that

the program expects to receive. The most important of these operators is the RoleInfoUpdater,

which is the operator that creates the context-information database and uses incoming events to

update the database. The compiler also produces an operator corresponding to each role that the

programmer declares. Each of these publishes an event containing the current membership of its

associated role whenever the database changes. As an example, consider a simple situation in

which the programmer has defined two roles, Role A and Role B. The part of the Solar operator

graph generated by running the RDL compiler on such an example is shown in Figure 3. Each

time the RoleInfoUpdater receives an event from Solar, it updates the database and publishes an

event instructing the Role operators to consult the database to determine their new membership.

5

3.1 RDL Structure
Explication of the structure of the database RDL programs use to store context info

requires a basic understanding of the structure of RDL itself. An RDL program is generally made

up of 4 files, each of which has its own syntax:

1) the class definition file (.cdf), which allows the programmer to define data structures,

referred to as objects, that are analogous to structs in C,

2) the event definition file (.edf), which allows the programmer to define event handlers

for each kind of event that can come from the underlying Solar framework,

3) the set definition file (.sdf), which allows the programmer to define sets of objects

based upon context information, and

4) the role declaration file (.rdf), which allows the programmer to specify which sets

will be exported as roles.

Appendix A lists the full syntax. Below, we introduce RDL to through a series of
examples.

3.1.1 Class Definition
Classes in RDL are analogous to structs in C/C++, little more than a set of named and

typed fields. RDL natively supports integer, boolean and string datatypes, but the programmer

can also define their own typenames using a C-style typedef statement. Classes are also valid

types for fields in a class declaration, as in Example 1. An instantiation of an RDL class is an

Database

Event stream coming
from Solar tree

Members of
Role B

Members of
Role A

Role
B

Role
A

RoleInfoUpdater

Figure 3: Connections between RDL compiler generated entities.

6

object, which is familiar to any Java or C++ programmer. As shown in the definition of the

Room class, RDL also supports lists, though only lists of objects; this constraint arises from the

way we implement classes and objects in the database. Each class definition becomes a table in

the underlying database, and each object is thus a record in the corresponding table. Each object

is also assigned a unique internal identifier, which is then used to refer to that object when lists

and set definitions are being evaluated. In the above case, a field named PrincipalID

wouldbe added to the Principal table, and one called RoomID to the Room table.

Since classes are translated into tables, lists become relationships between tables in the

database. In the example above, the Principal class has a one-to-many relationship with the

Room class (each Room contains many Principals, but each Principal can be in only one Room at

a time), which the programmer indicates by including a field with type Room in the definition of

Principal and a list of Principals in the Room definition. We implement this relationship by

putting the unique identifier of the appropriate record in the Room table into the field named loc

in every record in the Principal table. So, the field people in the Room class, which is a list of

Principal objects, is actually represented implicitly by the contents of the field loc in the

Principal class. Figure 4 demonstrates. Currently, there is no mechanism for associating

people with loc; the relationship is inferred. As a result, the RDL compiler supports only one

relationship between any two tables. Rectifying this deficiency should be addressed in future

work.

Since it would not make any sense for operators outside of those produced by the RDL

compiler to know about objects in the database and their unique identifiers, RDL must provide

some mechanism for the programmer to discuss objects in terms of context information coming

from Solar. The index keyword that appears in the class definitions above, coupled with

infer statements (discussed below), allow the programmer to get the ID of a particular object

and use it to update fields in other objects. If a field is declared as an index field, it must be

typedef string name;
typedef int time;

class Principal {
 index name username;
 int badge_num;
 Room loc;
 int age;
 bool button_pressed;
}

class Room {
 index name roomname;
 list Principal people;
 string size;
 bool light_status;
}

Example 1: Sample Class Definition (.cdf) file for RDL

7

Principal
PrincipalID username badge_num button_pressed age loc

0 'cmasone' 85577 0 21 1

1 'dfk' 85566 1 0 1

2 'hawblitz' 85555 0 0 0

Room
RoomID roomname size light_status

0 'Room 007' 'small' 1

1 'Room 116' 'small' 1

2 'Room 002' 'large' 0

unique from object to object so that the programmer can use the value of that field to distinguish

them. For instance, in the above class definitions, each Principal contains a field called loc of

type Room. Obviously, events coming in from Solar will not contain the proper RoomID to

insert into a Principal's loc field; in the above case, the programmer assumes that the events

contain room names, so the roomname field is an index for the Room class. This designation

allows him to infer the RoomID of each Room object given a value for roomname. Since the

programmer designs the operators and events for the Solar tree that feeds the RoleInfoUpdater, it

is reasonable to assume this knowledge.

3.2.2 Event Definition
Before one can write an RDL program, one must first write (or otherwise obtain) the Java

operators and events that make up the Solar tree that will feed events to the RoleInfoUpdater.

The event-definition portion of RDL allows the programmer to describe the events that the

RoleInfoUpdater should expect to see, and to define an event handler for each different class of

incoming events. Currently, RDL only supports events described by a set of typed fields, and the

only types it supports in events are int, boolean and string. Event handlers are also limited,

capable only of updating records or inserting records into the database. This limitation is not that

severe, however, because all complex data processing can be done in the Solar tree that feeds the

RoleInfoUpdater. Thus, the RoleInfoUpdater receives events containing attribute-value pairs. In

Example 2, the programmer describes an event class (an actual Java class) called

PrincipalLocEvent, which has several attributes with the types listed. He uses an infer

statement to get the RoomID of the Room object whose roomname field equals the value of the

roomname attribute of the event. In an event definition, the syntax used to refer to attributes of

the event is a dollar sign followed by the attribute name. This syntax allows attributes of the

Figure 4: The expression of lists in the database.
This is an example database from a program using the above class definitions.

The people field of the Room class is actually omitted from the database, and

whenever a programmer makes a reference to it, the code is converted to refer to
the loc field of the Principal class instead.

8

event to be distinguished from fields of an object that have the same name. The need for this

syntax is evident in the example shown here, both in the WHERE clause of the infer statement

as well as the event handler code that follows. The infer statement shown above results in the

creation of an attribute called loc that contains the RoomID of the record in the Room table

whose roomname field matched the roomname attribute of the event. The WHERE clause of

an infer must be a test for equality between the index field of the object being inferred and a

field in the event. If no such record exists, one is added and the RoomID of that record is placed

in loc. This new record is initialized using the expression in the WHERE clause of the infer

statement. In Example 2, the roomname field of the new Room record would be initialized with

the value of the roomname attribute of the incoming event. "Inferred" attributes can then be

used like a normal attribute in the event-handling code in the onevent block, below the

description of the event's attributes.

The onevent block of an event definition defines the event handler for the associated

class of event. An onevent block contains one or more IN blocks, each describing the

operations that should take place on a single table. Each IN clause is then made up of one or

more WHERE/ELSE blocks. The WHERE clause is almost exactly like an SQL WHERE clause; it

allows the programmer to specify an expression that must be true for a given record for that

record to be updated. If the WHERE clause is true for at least one record, the SET statements

inside the WHERE are executed on these records. Otherwise, the INSERT statements inside the

ELSE block are executed on the table specified in the enclosing IN clause. The ELSE block can

be empty if the programmer so desires. It may seem that this syntax is redundant, because in

many cases the information in the INSERT statement could be inferred from the SET statements

in the WHERE clause, but this is not necessarily the case. In Example 2, the proper treatment of

the badge_num field is unclear based on the SET statements. Should badge_num be initialized?

If so, with what value? Thus, the WHERE/ELSE syntax is necessary. At this time, it is not

event PrincipalLocEvent {
 int badge_num;
 bool button_pressed;
 string username;
 string roomname;
 infer Room loc WHERE roomname=$roomname;
} onevent {
 IN Principal {
 WHERE username = $username {

SET button_pressed=$button_pressed;
SET loc = $loc;

 } ELSE {
INSERT username,badge_num,button_pressed,loc
 VALUES $username,$badge_num,$button_pressed,$loc;

 }
 }

}

Example 2: Sample Event Definition (.edf) file for RDL

9

possible to remove records from any table, though allowing SQL REMOVE statements as well as

INSERT statements in the ELSE block would be trivial. Allowing arbitrary SQL in both the

WHERE and ELSE blocks would be more difficult than simply adding REMOVE statements, but it

would be difficult to allow arbitrary SQL and still provide the typechecking that the RDL

compiler currently performs on the contents of the whole IN clause.

3.2.3 Set Definition
Set definition is the heart of RDL. A role in RDL is no more than a set of Principal

objects, though one can define sets of any kind of objects. The syntax for set definition is roughly

similar to the mathematical method of expressing sets. Example 3, for instance, reads "the set

'LightsOn' equals all Rooms r, such that r.light_status equals true".

The parentheses after the name of the set are meant to support parameters in set definitions, but

this feature has not yet been implemented. The "extra" parentheses in the body of the definition

are necessary because RDL currently supports only fully parenthesized boolean expressions in

disjunctive normal form, i.e., (((a=b) && (b=c)) || ((a=c) && (c=d))).
RDL has two other features: existentially quantified variables and the usage of previously

defined sets in a set definition.

Existentially quantified variables allow the programmer to express criteria in terms of

relationships between objects. For example, to express co-location, one could define two

Principal objects, p and q and then define a set as all Principals p such that p.loc equals q.loc.

Such a definition would look like Example 4.

As is shown above, existentially quantified variables are declared just after the vertical
bar. There can be more than one existentially quantified variable in a single definition,
and they can be of different types, though they must all be objects. Additionally, one can

compare fields of objects of different types, as in the following definition:

Room LightsOn() = { Room r |
(((r.light_status = true)))

}

Example 3: A simple RDL set definition.

Principal Co-Located() = { Principal p | Principal q
(((p.loc = q.loc)))

}

Example 4: An RDL set definition featuring an existentially quantified variable.

Principal ButtonLights() = {
 Principal p | Principal q, Room r
 (((p.loc = q.loc) &&
 (p.button_status = r.light_status)))
}

Example 5: An RDL set definition featuring a multiple existentially quantified variables.

10

If the types match, a field of one object can be compared to an existentially quantified variable.

For instance, p.loc could be compared directly to a Room r. This feature makes more sense when

considered in light of RDL's other main syntactic feature: the usage of previously defined sets in

later set definitions.

RDL allows the programmer to define sets for the sole purpose of using them in the

definitions of other sets, although recursive definitions are not supported. The in operator can

then be used to test for membership in a set, as in Example 6. The set Atnd is the set of all

Principals p, such that there exists a Principal q and a Room r for which p.loc equals q.loc and

q.username equals 'dfk', or p.loc equals r, r.size equals 'big' and r is a member of LightsOn. In

English, Atnd is all Principals that are either co-located with dfk or who are in a big room with

the lights on. This (admittedly silly) example uses all the features of RDL that we have discussed

so far, and also shows a definition that contains multiple clauses.

3.2.4 Role Declaration
The simplest part of RDL, the role declaration file, simply tells the RDL compiler which

sets should be made into roles, that is, which sets need a Solar operator to be generated so that

their membership will be published as Solar events. As we said in the previous section, RDL

does not yet support parameterized sets, so the syntax of a role declaration is simple:

Since it would not make sense to allow a set of Room objects, or some other object that does not

include information about users, to be used in a role declaration, the RDL compiler currently

requires that the programmer define a Principal class with a field called "username" of type string

(or some user-defined type that resolves to string). This way, a role operator can just query the

database, asking for the username fields of the records that satisfy its query, and publish that list

as a Solar event.

role Attendee = Atnd();

Example 7: An RDL role declaration.

Room LightsOn() = { Room r |
(((r.light_status = true)))

}

Principal Atnd() = { Principal p | Principal q, Room r
(((p.loc = r) && (r.size = 'big') && (r in LightsOn()))

 ||
 ((p.loc = q.loc) && (q.username = 'dfk')))
}

Example 6: An RDL set definition featuring a multiple existentially quantified
variables and the use of a set definition inside a later set definition.

11

4 RDL Evaluation

In this section, we subjectively evaluate the semantics and syntax of RDL before

discussing the prototype RDL compiler and the performance of RDL-produced Solar operators in

section 5.

4.1 Ease of Use
RDL was designed to be syntactically similar to parts of other languages that are used to

express similar ideas. For instance, the set definition portion of RDL was designed to be

syntactically similar to mathematical set notation. For programmers comfortable with set

notation, writing set definitions in RDL should be pretty easy. Also, since set definitions get

compiled into one or more SQL SELECT statements, expressing sets in this way lends itself to

the creation of WHERE clauses for those SELECTS; in many cases, the programmer's code can

be directly sent to SQL. The syntax of event-definition files has similar advantages; since event

handlers are compiled into a series of SQL statements that update the RoleInfoUpdater database,

the syntax there was designed to be SQL-like as well. This choice not only makes programming

easier, because the language looks familiar to any SQL user, but it also shortens compile time by

enabling the compiler to directly reuse code.

The main flaw in terms of use is that one cannot refer to fields of fields; that is, the syntax

p.loc.size, where p is a Principal as defined above and p.loc is a Room, is not valid. The reason

for this deficiency is that SQL does not support such syntax, so implementing this would have

required significantly more work, and the time was not available. We are confident that this flaw

could be remedied in the next version of the RDL compiler, probably by creating an internal

variable of some kind and expanding the expression. For example, the expression p.loc.size =

'big' could be expanded to p.loc = r && r.size = 'big', where r is a Room.

4.2 Expressivity
We believe that the fact that the RDL-generated operators sit at the root of a Solar

operator tree adds a great deal to the expressive capabilities of our language. Because

complicated data transformation can take place out in the operator tree and the results then

forwarded to the RoleInfoUpdater, a wide variety of context information can be accommodated

by RDL. Provided that one can construct an operator tree to reduce the information to ints,

booleans and strings, the resulting events can be used by RDL. Additionally, objects provide a

convenient and familiar way to group and organize the context information. The most notable

failing of RDL at this time is its inability to express lists of simple data types, but, again, we are

confident that this could be resolved in the next version. This feature would be more difficult to

implement than chaining of the "." operator; perhaps a two-column table would be created in the

database for each list, mapping an internal object IDs to literal values.

The next subsection provides a complete example of an RDL program.

12

4.3 Example
Class Definition:

typedef string name;
typedef int time;

class Room {
 index name roomname;
 list Principal people;
 list Meeting meetings;
}

class Principal {
 index name username;
 Room loc;
 Meeting expected_meeting; # a reference to the next meeting this

 # principal will attend
}

class Time {
 index int externalID; # allows us to overwrite this one record
 time now; # instead of creating a new one each time

perhaps a new syntax should be created to
handle classes where there will only be a
single instantiation

}

class Meeting {
 index string mtg_name;
 Room mtg_room;
 list Principal expected_people;
 name chairname;
 time start_time;
 time end_time;
}

Event Definition:

event TimeEvent {
 int new_time;
} onevent {
 IN Time {
 WHERE externalID = 1 {
 SET now = $new_time;
 } ELSE {
 INSERT now, externalID VALUES $new_time, 1;
 }
 }
}

13

event PrincipalLocEvent {
 string username;
 string roomname;
 infer Room loc WHERE roomname=$roomname;
} onevent {
 IN Principal {
 WHERE username=$username {
 SET loc = $loc;
 } ELSE {
 INSERT username, loc VALUES $username, $loc;
 }
 }
}

event MeetingCreationEvent {
 string mtg_name;
 int start;
 int end;
 string chair;
 string roomname;
 infer Room mtg_room WHERE roomname = $roomname;
} onevent {
 IN Meeting {
 WHERE mtg_name = $mtg_name {
 SET mtg_name=$mtg_name,start_time=$start,end_time=$end,

chairname=$chair,mtg_room=$mtg_room;
 } ELSE {
 INSERT mtg_name,start_time,end_time,chairname,mtg_room

 VALUES $mtg_name,$start,$end,$chair,$mtg_room;
 }
 }
}

event PersonalPlannerEvent {
 string username;
 string next_meeting;
 infer Meeting m WHERE mtg_name = $next_meeting;
} onevent {
 IN Principal {
 WHERE username = $username {
 SET expected_meeting = $m;
 } ELSE {
 INSERT username, expected_meeting VALUES $username, $m;
 }
 }
}

14

Set Definition:

the chair of a meeting is any Principal p such that there exists a
Time t and a Meeting m such that p is in m's meeting room, p is
listed as the chair of m, and t tells us that it is currently between
the start and end times of m
Principal Chair() = {

Principal p | Time t, Meeting m
(
 ((p.loc = m.mtg_room) && (p.username = m.chairname) &&
 (t.now >= m.start_time) && (t.now <= m.end_time))
)

}

an attendee of a meeting is any Principal p such that there exists
Principals q and s, Meeting m and Time t such that p is in m's
meeting room, q is a chairperson and is in m's meeting room, and t
tells us that it is currently between the start and end of m
OR
p is expected at the meeting m, q is a chair and is in m's meeting
room, and t tells us that it is currently between the start and end
of m
Principal Attendee() = {

Principal p | Meeting m, Principal q, Principal s, Time t
(
 (
 (p.loc = m.mtg_room) &&
 (q in Chair()) &&
 (q.loc = m.mtg_room) &&
 (t.now >= m.start_time) &&
 (t.now <= m.end_time)
)
||
 (
 (p.username = s.username) && # p.username in m.expected_people
 (s in m.expected_people) && # is not supported, so this syntax

 # must be used instead.
 (q in Chair()) &&
 (q.loc = m.mtg_room) &&
 (t.now >= m.start_time) &&
 (t.now <= m.end_time)
)
)

}

Role Declaration:

role people_at_a_meeting = Attendee();
role chair_of_a_meeting = Chair();

15

5 Implementation

The prototype RDL compiler is written using JavaCC2, the Java Compiler Compiler, a

tool available from WebGain that helps one write compilers in Java. JavaCC allows the compiler

developer to convert a formal description of a programming language (such as Appendix A) into

a set of Java functions, one for each non-terminal in the language. These functions can contain

arbitrary Java code and can also take parameters. We used this functionality to allow us to parse

the input files directly into our internal data structures, without having to build an intermediate

representation of the input, such as a parse tree.

To manage the context information database, we use a MySQL server running on a well-

known remote host. To facilitate our communication with the server, we use the MM MySQL

package of Java Database Connectivity (JDBC) drivers3. Currently, there is only one database

serving all running RoleInfoUpdaters. This configuration is less than ideal, as it could cause

conflicts between classes with the same name but different definitions, in addition to providing a

potential performance bottleneck. Unfortunately, time constraints made this compromise the only

viable solution at this time. Finding some way to differentiate tables from different

RoleInfoUpdaters, or even to share common tables, is a subject for future work.

The prototype RDL compiler only generates the RoleInfoUpdater, but this ability is

enough to allow us to test the correctness of RDL-generated event handlers and role-membership

queries. All sets are modeled as tables in the database, named after the set. Each record in set

tables is just an ID of a record in another table. Thus, when another set definition needs to check

a value for membership in a particular set, the RoleInfoUpdater simply selects all records in the

appropriate database and checks against the returned values.

Appendix B shows a portion of the code produced by the RDL compiler for the example

shown in Section 4.3.

6 Related Work

There is surprisingly little work on access-control in context-aware systems. Kazuhiro

Minami [5] discusses a method for using context-aware roles in controlling access to context

information gathered by the Solar system. RDL is a necessary extension for defining roles and

tracking role membership.

Georgiadis et al. [3] combine context information with their team-based access control to

create a system called C-TMAC. Their work focuses mostly on determining the actual

permissions of a user, and then using context information to determine whether or not the user is

allowed to exercise those privileges. Upon login to the C-TMAC system, the user chooses a role

to occupy from the set of roles he is allowed to assume. C-TMAC also defines entities called

teams, which have associated with them certain permissions and certain contexts within which

2 http://www.webgain.com/products/java_cc/
3 http://mmmysql.sourceforge.net/

16

those permissions may be exercised. A context is defined by several ranges of values, one for

each possible parameter used to describe context; for example, if context is described in terms of

a patientID, a location and a time, ranges of acceptable values must be defined for each

parameter. So, the user's total set of permissions and valid contexts is calculated from their

chosen role and chosen teams, and then context information determines whether the user is

allowed to exercise his permissions on a request by request basis. C-TMAC is focused on

implementing permissions, a problem that RDL ignores. Thus, the expressivity of C-TMAC's

role-definition language is limited. For instance, C-TMAC seems to have no way to express a

requirement for co-location of two users, a construct that is trivial in RDL.

The environmental role work, by Covington et al. [4], also has a wider focus than our

work; it covers everything from role definition to permission assignment to policy definition.

Their project models environmental conditions as roles, which has the advantage of keeping

things simple by basing everything on the role abstraction, but it seems to restrict what they can

express. There does not seem to be a way to discuss the attributes of a particular principal (or

subject, in their language) in relation to those of other principals. It is unclear how concepts like

co-location are expressed, and the language does not seem to be as extensible as RDL. It is

simple, using a Prolog-style logical syntax for both role and policy definition, but the trade-off of

simplicity for expressivity and extensibility may not be the best.

7 Future Work

The RDL compiler exists and, as shown above, produces operators that work efficiently

and correctly. Several features remain to be implemented that would enhance both the

expressiveness and the simplicity of RDL. Chief among these is parameterization of sets. If one

wanted to define two similar sets, such as "people in room 005" and "people in room 003", in the

current implementation one would need to write two definitions that are essentially the same,

except for one string literal. If the definitions could take parameters, however, one could write a

single definition for both, and then just pass in the appropriate string to differentiate the two.

This addition is probably the most complex, requiring some coherent naming scheme for all the

tables representing the same set definition, but with different parameters. It is related to the issue

of differentiating, and possibly reusing, tables from different RoleInfoUpdaters; both require

some way of naming tables so that two tables based on the same definition are given different, but

easily identifiable, names. Second, to enhance the expressivity of RDL, lists of native data types

should be implemented and the limitation on lists of objects should be removed. As we mention

above, this modification would also be fairly difficult, probably requiring the addition of some

more tables to the database. Finally, as a performance enhancement, only the role operators

affected by the last database update should re-evaluate and re-publish the membership of their

role. Currently, all role operators do this every time the database is updated, which is a waste of

bandwidth and places an unnecessary burden on the database server. This modification would be

fairly easy, simply requiring that some information be kept about which fields in which tables

17

were updated, and then checking that against each definition to see which definition depends on

the updated fields.

8 Summary

In response to the need to control access to resources in a wirelessly networked, context-

aware environment we have implemented RDL, a language used to define context-aware roles as

part of a role-based access-control system. We designed RDL to work with a Solar infrastructure

that handles both collection of context-aware data and complicated data-reduction tasks, so that

RDL can be as simple as possible. RDL's syntactic similarity to other, well-known programming

languages helps make it easier to use, and the programs written with it perform efficiently. We

believe that RDL provides a simple, extensible and expressive way to define and discuss context-

aware roles as part of a role-based access control system.

9 Acknowledgements

First of all, I would like to thank my advisor, Professor David Kotz, for his guidance and

sufferance of my vacillating interests. He tolerated my at times wayward sense of where I wanted

to go with this project, and allowed me to keep my own pace, within the bounds of reason. I also

thank Kazuhiro Minami and Guanling Chen for their continual feedback on the project, as well as

their constant willingness to help me find tools and other resources to help me on my way. I also

thank my girlfriend for her understanding, even though I had to go work on my thesis the night of

our one-year anniversary.

References
[1] Guanling Chen and David Kotz. Supporting adaptive ubiquitous spplications with the Solar

system. Computer Science Technical Report TR2001-397. Dartmouth College, May 31,

2001.

[2] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein and Charles E. Youman. Role based

access control models. In IEEE Computer, volume 2, February 1996.

[3] Michael J. Covington, Wende Long, Srividhya Srinivasan, Anind K. Dey, Mustaque Ahamad

and Gregory D. Abowd. Securing context-aware applications using environment roles. In

Proceedings of the Sixth ACM Symposium on Access control models and technologies,

Chantilly, VA, 2001.

18

[4] Christos K. Georgiadis, Ioannis Mavridis, George Pangalos and Roshan K. Thomas, Flexible

team-based access control using contexts. In Proceedings of the Sixth ACM Symposium on

Access Control Models and Technologies, Chantilly, VA, 2001.

[5] Kazuhiro Minami and David Kotz. Controlling access to pervasive information in the "Solar"

system. Computer Science Technical Report TR2002-422. Dartmouth College, February 28,

2002.

19

Appendix A: Grammar for RDL

Class Definition:

<start> := <typedefs> <classdefs>
<classdefs> := (<classdef>)+
<classdef> := "class" <identifier> "{" (<fielddec>)+ "}"
<fielddec> := <type> <identifier> ";"
<type> := ["list" | "index"] (<builtintype> | <userdeftype>)
<builtintype> := "int" | "bool" | "string"
<userdeftype> := <identifier>
<typedefs> := (<typedef>)*
<typedef> := "typedef" <builtintype> <identifier> ";"

Event Definition:

<start> := <eventdef>+
<eventdef> := "event" <identifier> "{" <fields> "}" "onevent" "{"

(<inclause>)+ "}"
<fields> := <fielddec> (<infer_or_field>)*
<infer_or_field> := <fielddec> | <infer>
<infer> := "infer" <objtype> <fieldname> "WHERE" <inferwhereclause>
<fielddec> := <type> <fieldname> ";"
<fieldname> := <identifier>
<inclause> := "IN" <identifier> "{" (<whereelse>)+ "}"
<whereelse> := "WHERE" <whereclause> "{" <updatestmts> "}" "ELSE "{"

<initstmts> "}"
<updatestmts> := (<update>)+
<update> := "SET" <setclause> ";"
<initstmts> := (<init>)+
<init> := "INSERT" <initfields> "VALUES" <initvalues> ";"
<initfields> := <identifier> ("," <identifier>)
<initvalues> := <sqlexp> ("," <sqlexp>)*
<type> := "int" | "bool" | "string"
<objtype> := <identifier>
<setclause> := <identifier> "=" <sqlexp>

("," <identifier> "=" <sqlexp>)*
<whereclause> := (<identifier> | <sqlexp>) <relop> <sqlexp>

("," (<identifier> | <sqlexp>) <relop> <sqlexp>)*
<inferwhereclause> := <identifier> "=" <sqlterm>
<relop> := "=" | "!=" | "<=" | ">=" | "<" | ">"
<sqlexp> := (<sqlterm>)+
<sqlterm> := regexp((["a"-"z","A"-"Z","_","0"-"9","(",")","-
","+","!","$","%","&","*"])+)

20

Set Definition:

<start> := <defns>
<defns> := (<defn>)+
<defn> := <obj_type> <identifier> "(" <listofvars> ")" "=" "{"
 <objdec> "|" <listofobjs> "(" <orclause> ")" "}"
<object_type> := <identifier>
<listofvars> := [<vardec>] ("," <vardec>)*
<listofobjs> := [<objdec>] ("," <objdec>)*
<vardec> := <type> <identifier>
<type> := <builtintype> | <userdeftype>
<builtintype> := "int" | "bool" | "string"
<userdeftype> := <identifier>
<objdec> := <identifier> <identifier>
<orclause> := "(" <andclause> ")" ["||" <orclause>]
<andclause> := "(" <clause> ")" ["&&" <andclause>]
<clause> := <Lvar> <op> (<Rvar> | <literal>)
<Lvar> := <identifier> ["." <identifier>]
<Rvar> := <identifier> ["(" <params> ")" | "." <identifier>]
<params> := [<identifier>] ("," <identifier>)*
<op> := "!=" | "==" | ">=" | "<=" | "<" | ">" | "in"
<literal> := <num> | <string> | <boolconst>
<boolconst> := "true" | "false"

Role Declaration:

<roledecs> := (<roledec>)+
<roledec> := "role" <identifier> "="

<identifier> "(" [<params>] ")" ";"
<params> := (<string> | <num>) ("," (<string> | <num>))*

21

Reused:

<identifier> := regexp(["a"-"z","A"-"Z","_"]
(["a"-"z","A"-"Z","_","0"-"9"])*)

<num> := regexp((["0"-"9"])+)
<string> := regexp("\""

 (
 (~["\"","\\","\n","\r"])
 |
 ("\\"
 (

 [n","t","v","b","r","f","a","\\","?","'","\""]
 |

 "0" (["0"-"7"])*
 |

 ["1"-"9"] (["0"-"9"])*
 |

 ("0x" | "0X") (["0"-"9","a"-"f","A"-"F"])+
)
)
)*
 "\""
)

22

Appendix B: Sample Code Produced by RDL Compiler

public void handleEvent(IEvent ev) {

 Hashtable h = new Hashtable();
 Statement s;
 ResultSet rs;
 int num_results;

 try {
 if((ev.getClass().getName()).equals("PrincipalLocEvent")) {
 PrincipalLocEvent e = (PrincipalLocEvent)ev;
 Matcher escaper;
 String escaped_string;
 escaper = (Pattern.compile("(['\\\\])")).matcher(e.username);
 escaped_string = escaper.replaceAll("\\\\$1");
 h.put("username", "'" + escaped_string + "'");

 escaper = (Pattern.compile("(['\\\\])")).matcher(e.roomname);
 escaped_string = escaper.replaceAll("\\\\$1");
 h.put("roomname", "'" + escaped_string + "'");

 s = con.createStatement();
 rs = s.executeQuery("SELECT RoomID from Room WHERE roomname=" +

(String)h.get("roomname"));
 num_results = 0;
 while(rs.next()) {
 num_results++;
 if(num_results > 1)
 break;
 h.put("loc", (new Integer(rs.getInt(1))).toString());
 }

 if(num_results==0) { //no results
 s.executeUpdate("INSERT INTO Room (roomname) VALUES (" +

 (String)h.get("roomname") + ")");
 rs = s.executeQuery("SELECT RoomID from Room WHERE roomname=" +

 (String)h.get("roomname"));
 num_results = 0;
 while(rs.next()) {
 num_results++;
 if(num_results > 1)
 break;
 h.put("loc", (new Integer(rs.getInt(1))).toString());
 }

 }

23

 try {
 int retval = 0;
 retval = s.executeUpdate("UPDATE Principal SET loc=" +

 (String)h.get("loc") +
 " WHERE username=" +
 (String)h.get("username"));

 if(retval == 0) {
 s.executeUpdate("INSERT INTO Principal (username,loc) VALUES ("

 + (String)h.get("username") + "," +
 (String)h.get("loc") + ")");

 }
 } catch(SQLException PrincipalLocEventse2) {
 }

 }
 } catch(SQLException se) {
 se.printStackTrace();
 }
}

