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Abstract

Wreless networks are an ideal environment for mobile
agents, since their mobility allows them to move across an
unreliable link to reside on a wired host, next to or closer
to the resources that they need to use. Furthermore, client-
specific data transfor mations can be moved across the wire-
lesslink and run on a wired gateway server, reducing band-
width demands. In this paper we examine the tradeoffs
faced when deciding whether to use mobile agentsin a data-
filtering application where numerous wireless clients filter
information from a large data stream arriving across the
wired network. e devel op an analytical model and use pa-
rametersfromfiltering experiments conducted duringa U.S
Navy Fleet Battle Experiment (FBE) to explore the model’s
implications.

1. Introduction

Mobile agents are programs that can migrate from host
to host in a network of computers, at times and to places of
their own choosing. Unlike applets, both the code and the
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execution state (heap and stack) move with the agent; un-
like processes in process-migration systems, mobile agents
move when and where they choose. They are typically writ-
ten in a language that can be interpreted, such as Java, Tcl,
or Scheme, and thus tend to be independent of the operating
system and hardware architecture. Agent programmers typ-
ically structure their application so that the agents migrate
to the host(s) where they can find the desired service, data,
or resource, so that all interactions occur on the local host,
rather than across the network. In some applications, a sin-
gle mobile agent migrates sequentially from host to host; in
others, an agent spawns one or more child agents to migrate
independently.

A mobile-agent programmer thus has an option not avail-
able to the programmer of a traditional distributed applica-
tion: to move the code to the data, rather than moving the
data to the code. In many situations, moving the code may
be faster, if the agent’s state is smaller than the data that
would be moved. Or, it may be more reliable, since the ap-
plication is only vulnerable to network disconnection dur-
ing the agent transfer, not during the interaction with the
resource. For a survey of the potential of mobile agents,
see [CHK97, GCKROO].

These characteristics make mobile-agent technology es-
pecially appealing in wireless networks, which tend to have
low bandwidth and low reliability. A user of a mobile
computing device can launch a mobile agent, which jumps
across the wireless connection into the wired Internet. Once
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there, it can safely roam among the sites that host mobile
agents, interacting either with local resources or, when nec-
essary, with resources on remote sites that are not willing to
host mobile agents. Once it has completed its task, it can
return to (or send a message to) its user, using the wireless
network.

Clearly the agent case avoids the transmission of un-
necessary data, but does require the transmission of agent
code from client to server. The total bandwidth consumed
for code transmission depends on the agent size and arrival
rate. For most reasonable agent code sizes and arrival rates,
the savings in data transmission may be much larger than
the code transmissions. Of course, each client’s code could
be pre-installed on the server.! This approach presupposes,
however, that the clients are known in advance. In many
of the environments that we consider, new clients with new
code can appear at any time, and possibly disappear only a
short while later. In scenarios like the one discussed in this
paper, we need at least a dynamic-installation facility, and
mobile agents give us the flexibility to move filtering code
to any point in the network, and to move the code again as
the situation changes. Although we do not consider such
multi-machine scenarios in this initial paper, they will be an
important part of future work.

In this paper we analyze the potential performance bene-
fits of mobile agents in a typical data-filtering scenario. The
scenario is based on a filtering experiment that was con-
ducted during a U.S. Navy Fleet Battle Experiment (FBE).
In the FBE experiment, mobile agents were sent across a
wireless link from the U.S.S. Coronado to a shore-based
intelligence database, where they filtered incoming intel-
ligence reports to find and return only those reports rele-
vant to the Coronado’s current mission. Although the sce-
nario is drawn from an actual military exercise, it is suffi-
ciently general to reflect many applications, from military
applications in which soldiers monitor weather, terrain and
troop movements, to commercial applications in which con-
sumers monitor stock reports and news stories.

In our scenario there are numerous information produc-
ers, each of which pushes out a steady stream of infor-
mation, such as weather observations, stock quotes, news
stories, traffic reports, plane schedules, troop movements,
and the like. Clearly each source has a different data rate
and frequency. There are also numerous information con-
sumers, whose computers are connected to a wireless net-
work channel. We assume that the information streams
gather at a gateway server, which then transmits the data
across the wireless channel to the consumers. Although we
model a single server machine, in a large system we expect
that the server would be a multiprocessor or cluster, such

LIn fact, most mobile-agent systems include, or plan to include, some
kind of code-caching functionality, so that the agent code is transferred
only the first time that an agent visits a machine.

as those used in large Internet servers today. Although we
model a single wireless channel, the results are easily exten-
sible to multiple channels, each with its own server, whether
in separate or overlapping regions.

Each consumer is interested in a different (but not nec-
essarily disjoint) subset of the data. In particular, each con-
sumer is interested in only a few information streams, and
then only in some filtered set of items in those streams. For
example, a traveler might monitor the weather stream, but
not the stock stream, and of the weather stream, might care
only about the weather in those locations that she will visit
today. The first step requires no computation; the second
may require some computation related to the size of the data
stream. We model a consumer’s interests as a set of tasks,
all running on that consumer’s single computer client.

We compare two approaches to solving this problem:

1. The server combines and broadcasts all the data
streams over the wireless channel. Each client receives
all of the data, and each task on each client machine fil-
ters through the appropriate streams to obtain the de-
sired data.

2. Each task on each client machine sends one mobile
agent to the server. These “proxy” agents filter the data
streams on the server, sending only the relevant data as
a message to the corresponding task on the client.

We use two performance metrics to compare these two
techniques: the bandwidth required and the computation
required. We can directly compare the usage of the two
techniques, and we can evaluate the capacity needed in the
server or the network. Clearly, the mobile agent approach
trades server computation (and cost) for savings in net-
work bandwidth and client computation, a valuable tradeoff
if bandwidth is limited or if it is important to keep client
weight and power requirements (and cost) low.

In the next section, we present the FBE experiment in
more detail. Then, in two subsequent sections, we define
the parameters that arise during the analysis, derive the ba-
sic equations, and interpret their significance. In Section 4,
we review the parameter values that we were able to obtain
from the actual FBE experiment, and describe the experi-
ments that we performed to obtain values for other key pa-
rameters. In Section 5, we use these values to explore the
performance space given by our model. We describe some
related work in Section 6 and summarize in Section 7.

2. The Fleet Battle Experiment

In practice, the United States Navy (USN) Fleet Battle
Experiment (FBE) series involves information-flow archi-
tectures that exemplify the general scenario described in the



introduction. In FBE-Echo, the fifth in the series, Lock-
heed Martin Advanced Technology Laboratories (LM ATL)
fielded CAST, a mobile-agent application that optimized
the flow of critical information through bandwidth-limited,
congested, and unreliable wireless networks [Cha99]. As
the results later in this paper indicate, the mobile-agent so-
lution lowers bandwidth consumption in the limited experi-
ment scenario and promises to be even more beneficial in a
realistic, high-intensity operation.

The USN Maritime Battle Center in Newport, Rhode Is-
land, conducts semi-annual FBEs in cooperation with the
numbered USN fleets with the goal of streamlining and in-
vigorating the Navy’s warfare concept development, doc-
trine refinement and warfare innovation process. FBE-Echo
was held in March 1999 in the San Francisco Bay area, and
examined operational and tactical requirements for warfare
in the years 2005-2010. More than 15 ships and 12,000
Sailors and Marines from southern California participated.
The FBE-Echo hypothesis was that “warfighting processes
supported by new concepts and technology allow the Navy
to enter and remain in the [coastal region] indefinitely with
the ability to provide protection, weapons fires and C4l2
support to forces ashore.”?

At FBE-Echo, CAST was integrated into the Full Di-
mension Protection Cell aboard the command ship, the
U.S.S. Coronado. CAST spawned a set of mobile “scout”
agents to correlate events indicative of impending The-
ater Ballistic Missile (TBM) launches and send filtered re-
ports back to the U.S.S. Coronado. CAST then supplied
alerts on TBM activity to the Air Operations Commander,
who tasked fleet surveillance assets and launched a simu-
lated preemptive strike. The scout agents traveled across
the SIPRNET, the secure military Internet, from the U.S.S.
Coronado to a simulated shore-based intelligence feed. The
SIPRNET link between the U.S.S. Coronado and the shore
was a wireless Super High Frequency (SHF) satellite com-
munications link, whose bandwidth was 768 kbps.* Intelli-
gence reports were approximately 150 bytes in size and ar-
rived in bursts spaced about every four minutes, with each
burst containing five to ten reports at a rate of one report
every four seconds. The CAST scout agents were about
1 KByte in size.

The main benefit of CAST was that agents selectively
scanned and filtered the incoming intelligence reports, for-
warding only those that correlated to a significant event.
The mobile scout agents carried selection specifications

2C4l is a military abbreviation for Command, Control, Communica-
tions, Computers and Intelligence.

SWeb Site: Fleet Battle Experiment Echo, Asymmetric Urban
Threat, http://www.nwdc.navy.mil/navigation/mbc.htm,
last modified 8/31/00, last accessed 9/17/00.

4In this paper, we use K and M to mean powers of two (10 and 20,
respectively) and k and m to mean powers of 10 (3 and 6 respectively).
Thus kbps means 102 bits per second.

from the U.S.S. Coronado across the wireless link to the
remote information sources, stayed there to monitor new
information, and periodically sent back a much reduced set
of data, saving both bandwidth and operator attention to ir-
relevant data. Each TBM event differs by the location, the
initiating event, the sets of reports, and the timelines, so that
an implementation without mobile filtering logic embodied
in a mobile scout agent would have been cumbersome and
complex.

Another benefit of CAST’s mobile-agent approach was
its ability to handle network outages. The satellite connec-
tion disconnected frequently, for a few seconds to an hour
at a time. With a mobile-agent approach, the task of moni-
toring the database was uninterrupted once agents were res-
ident on shore, although, of course, reports that passed the
agents’ filters had to be buffered until the link came back
up. New agents were programmed to repeatedly attempt
the ship-to-shore leap as long as the satellite connection was
down.

In the exercise, the ratio of relevant to irrelevant reports
was only about 0.5, since the simulated intelligence feed did
not create a realistic number of extraneous “noise” events,
and a scout agent was spawned approximately every 4 min-
utes. In an actual high-intensity operation, the number of
extraneous reports will be much higher and drive the ratio
of relevant to irrelevant reports down to at least 0.005. Espe-
cially in an urban scenario, a large number of reports would
be generated by MTI (Moving Target Indicator) and ELINT
(Electronic Intelligence) sources. The JSTARS MTI sensor,
for example, is capable of reporting on 100 targets every
second. A real conflict would involve several JSTARS and
other sensor platforms. In such a situation, CAST would
launch a larger number of scouts, up to a rate of 10 per sec-
ond. The remaining parameters are identical for exercise
and actual scenarios.

LM ATL has tailored the CAST mobile agents to several
other military applications, including the DARPA Small
Unit Operations program and U.S. Army intelligence op-
erations [HMW?98]. In each case, mobile agents proved to
be effective in mitigating the effects of bandwidth-limited,
unreliable, wireless networks.

To fully explore the general scenario presented by the
FBE-Echo CAST experiments, we developed an analytic
model. The model considers a more general scenario in-
volving multiple clients (whereas CAST had one, the U.S.S.
Coronado) and multiple independent streams of reports. In
the rest of this paper we present our model and sample some
of the performance space using specific parameters.

3. The modd

Since the data is arriving constantly, we think of the sys-
tem as a pipeline; see Figure 1. We imagine that, during a



time interval ¢, one chunk of data is accumulating in the in-
coming network buffers, another chunk is being processed
on the server, another chunk is being transmitted across the
wireless network, and another chunk is being processed by
the clients. If the data arrives at an average rate of d bits per
second, the average chunk size is td bits.

T Ts ; Tw 1 Te !
Wirelos [T1T+—~Cliend
TTH(Serven {1111 [[[1—Cliend
network
Information m
data streams

Figure 1. The scenario viewed as a pipeline.

For the pipeline to be stable, then, each stage must be
able to complete its processing of data chunksin less than
t time, on average (Figure 2). Thatis, 77 < t, Ts < t,
Tw < t,and T¢c < t. Inthe anaysis that follows we
work with these steady-state assumptions; as future work,
wewould like to explore the use of aqueueing model to bet-
ter understand the dynamic properties of this system, such
as the buffer requirements (queue lengths).

Time »
0 t 2t 3t 4t 5t 6t 7t 8t
Server receives chunk from Internet, T, ’ AlB DIE| ..
Server processes chunk, T A|B|C|D|E
Server sends chunk across wireless, Ty, A|B|C E
Client processes chunk, T¢ A | B D |E

Figure 2. The pipeline timing diagram. The
letters represent data chunks. For example,
between time 3t and 4¢ chunk A is being pro-
cessed by the clients, chunk B is being trans-
mitted from the server to the clients, chunk C
is being processed by the server, and chunk
D is being received by the server.

3.1. The parameters

Below we define all of the parametersused in our model,
for easy reference.

d = input data streams’ speed (bits/sec);

t = timeinterval (seconds);

D = td, the size of a data chunk arriving during time
period ¢ (bits);

B = wireless channel’s total physical bandwidth
(bits/sec);

By = communication overhead factor for broadcast

By < 1);

B, = Bp3, the effective bandwidth available for broad-
cast (bits/sec);

B, = communication overhead factor for agents
(Ba < 1);

B, = Bf,, the effective bandwidth available for agent
messages (bits/sec);

B = the bandwidth available in the server’s wired Inter-
net connection, for receiving data streams (bits/sec);
presumably B; >> B;

n = number of client machines;

i = index of aclient machine (1 < i < n);

m; = number of tasks on each client machine 1,
1<i<n;

j =index of atask (1 < j < m;);

m =Y m;, total number of tasks;

r = arrival rate of new agents uploaded from the clients
to the server (per second);

K = average agent size (bits);

F}; =thefractionof thetotal data D that task j onclient
choosesto process (by choosing to processonly certain
data streams);

F;; = the fraction of the data processed by task j on
client ¢, produced as output;

cij(D, F;, Fij) = computational complexity of task j on
client ; (operations);®

u = the average computational complexity, for a given
D (p = 43, ¢ij(D, Fjj, Fij)). Itis aconvenient
shorthand.

Cinit = average number of operations needed for a new
agent to start and to exit;

S¢ = performance of client machine ¢ (operations/sec);

af = performance efficiency of the software platform on
the client machine: (a§ < 1);

S¢ = peformance of the server machine (opera-
tiong/sec);®

«® = performance efficiency of the software platform on
the server (a® < 1);

Notes. B istheraw bandwidth of thewirelesschannel, but
that bandwidth is never fully available to application com-
munication. We assume that a broadcast protocol would
actually achieve bandwidth B}, and a mobile-agent messag-
ing protocol would achieve bandwidth B . In Section 4 we
discuss our measurements of B, and By,.

When comparing a mobile-agent approach to amoretra-
ditional approach, it is most fair to expect that a traditional
system would use compiled code on the client (such as
compiled C code), whereas a mobile-agent system would
use interpreted code on the server (because most mobile-
agent systems only support interpreted languages like Java

SWe expect that ¢() will have little dependence on D, directly, but more
onDF]..
6\We assume that all agents get equal-priority access to server cycles.



or Tcl). Theclient and server will likely be different hard-
ware and have different speeds, S © and S*, respectively. Be-
cause the language, compiler, and run-time system impose
overhead, the client runs at a fraction ¢ of the full speed
S¢, and the server runs at afraction a® of the full speed S*.
Of course o < 1, and we expect a® < «af, since filtering
agents on the server will be interpreted, whereas filtering
code on the clients will be compiled. On the other hand, we
expect S° >> S°¢.

Computed values. Ashinted inthefiguresabove, thefol-
lowing values are computed as aresult of the other parame-
ters.

Tr : Thetime for transmission across the Internet to the
server.

Ts : Thetime for processing on the server.

Tw : Thetime for transmission across the wireless net-
work.

Tc : Thetime for processing on the client.

Most of these havetwo variants, i.e., T'sa, Twa and Tc 4
fortheagent case, and T o g, T'sg and T g for the broadcast
case.

3.2. Computing the constraints

As mentioned above, each stage of the pipeline must
complete in less than time ¢, that is, 77 < t, Ts < t,
Tw <t,andT¢o < t.

Internet, 77. Sincewe are concerned with alternativesfor
the portion of the system spanning the wireless network, we
do not specifically model the Internet portion. We assume
that the Internet is not the bottleneck, that is, it is sufficiently
fast to deliver all data streams on schedule;

D
Tr=—=— <t 1
1= < 1)
d < By @)
of course.
Server, Ts. In the broadcast case, the server simply

merges the data streams arriving from the Internet. This
stepistrivial, andinany case T'sp < t dmost certainly.

In the agent case, data filtering happens on the server.
The server’stimeis acombination of thefiltering costs plus
the time spent initializing newly arrived agents:

n  m;
: C” D sz’F ) rtCinit

Tsq = 3

S5A = Z Z asSs + asSs ( )

i=1 j=1

If we know that the expected value of the computing
complexity c;; is p, then we can simplify and obtain a

bound on the number of client tasks (agents), m. That is,
we assume that

Eij ciJ(D FzgaF i) . mp

asSs ~asSs

4)
Now T'sa <'t,

mp + rtCinit

asSs = ! ®)

(aSSS — T'C,'mt)é (6)

Wireless network, Ty . The broadcast case is relatively
simple, since al of the chunk data D is sent over the chan-
nel:

b
d < By (8)

Recall that By = Bﬂb, andthat D = td.

In the agent case, agents filter out most of the data and
send a subset of the data items across the wireless network,
as messages back to their task on the client. Agent;; sends,
on average, DF;; Fy; bits from a chunk. The total time to
transfer all agents’ messages is thus

DF.F,
Ly DEGFy <t

D

Twa = B, < ©
If we consider the average agent and define
F'F=—= Z Fyj, (10)
then, since there are m agents,
mDF'F
— <
B, S t (12)

Itisnot quite that simple, however.

The wireless channel also carries agents from the clients
to the server, so we must adjust for the bandwidth occupied
by traffic in the reverse direction.” Recall that new agents
of size K jump to the server at arate r per second. This
activity adds r K hits per second (rtK bits per chunk) to
thetotal traffic. So, updating equation (11) we have

DF'F + rtK
% <t (12)

which leads to a bound on the number of agents (tasks):

B, —-rK
m< ———— 13
S —IFF (13)
7Unless the channel is full duplex, in which case there is no impact on
the downlink bandwidth. Here we assume a half-duplex channel.




When does the mobile-agent approach require lesswire-
less bandwidth? We can compute the bandwidth needed
from the amount of data transmitted for one chunk, ex-
panded by 1/ to account for the protocol overhead, then
divide by thetime ¢ for one chunk:

11 , 1L
g(E(mDFF‘FT’tK)) < t(/@bD) (14)
mdF'F +rK < &d (15)
By
1 B, rK
"< FEB, T a) (1)

Note that inequality (16) is nearly the same as inequal-
ity (13). If broadcast is possible (d < Bj;), then we should
use broadcast iff m exceeds the limit provided in inequal-
ity (16). If broadcast isimpossible (d > Bj), then of course
the mobile-agent approach is the only choice, but the num-
ber of agents must be kept within the limit specified in (13).

Note that in the broadcast case the wireless bandwidth
must scale with the input stream rate, while in the agent
case the wireless bandwidth must scale with the number of
agents and the relevance of the data. Since we expect that
most of the data will be filtered out by agents (i.e., F'F <
0.01), the agent approach should scale well to systems with
large data-flow rates and moderate client popul ations.

Client, Tc. We consider only the processing needed to
filter the data stream, and assume that the clients have ad-
ditional power and time needed for an application-specific
consumption of the data. Also, we assume the client has
sufficient processing power to launch agents at rate r /n.

In the broadcast case, the data filtering happens on the
clients. We must design for the slowest client, i.e.,

2 ¢i;(D, Fl;, i)
Ton :m?xzz]c—;{j (17)
j:l (202

If al n client hosts were the same, we could write simply

m_p

Top = — 1
on ==~ (18)
andsince T¢p < tisrequired,
t
m < naS°— (29

7

In the agent case there is no data filtering on the clients,
s0Tc4 = 0.

3.3. Commentary

The results are summarized in Table 1.

We can see that the agent approach fits within the con-
straints of the wirel ess network if the number (m and r) and
size (K) of agentsis small, or the filtering ratios (F'' F') are
low.

We believe that, in many redlistic applications, most
agents will remain on the server for a long time, and new
agentswill beinstaled rarely. Thus, r issmall. Most of the
time, r = 0. This assumption simplifies some of the equa-
tions into a more readable form, as shown in the right side
of thetable.

Notice that the broadcast case scales infinitely with the
number of clients, but to add tasks to a client or to add data
to the input stream requires the client processor to be faster.
On every client 4

(D, Fl Fy
C]( iJ ) S ¢ (20)
2. : afSe¢
]:1 l (2
2 ci(D, Fly, Fij)
c A ek Rl
iz Y @

j=1

S0, as d or t increases or as m; (the range of j) increases,
S¢ must increase.

The mobile-agent case, on the other hand, requires little
from the client processor (for filtering), but requires a lot
more from the server processor. That processor must scale
with the input data rate, the number of clients, and the num-
ber of tasks per client.

mp + 7tCinit
tas

S° > (22)
On the other hand, it may be easier to scale a server in a
fixed facility than to increase the speed of individual client
machines, especially if the server livesin acomfortable ma-
chine room while the clients are mobile, battery-operated
field machines.

Buffersin the pipeline. Since we model our application
as a pipeline, we are primarily concerned with throughput
and bandwidth, rather than response time and latency. As
long asthe pipelineis stablein the steady state, i.e., no com-
ponent’s capacity is exceeded, the system works. All of our
above calculations are based on that approach.

In area system, of course, the data flow fluctuates over
time. Buffers between each stage of the pipeline hold data
when one stage produces data faster than the next stage can
processit. In amore complete analysis we would use a full
gueuing model to analyze the distribution of buffer sizes at
each stage of the pipeline, givendistributionsfor parameters
liked, r, and ¢(). We leave this analysis for future work.

Latency. Although we are most concerned with through-
put, in our application some clients may also be concerned



Table 1. Summary of the constraints derived earlier, along with simplified constraints that assume
r = 0. Tt and T¢ are not affected by r. At the bottom, we show the comparison where agents require
less wireless bandwidth than the broadcast approach.

Limits Simplified Limits
Stage Broadcast Agent Broadcast Agent
Internet, Tt d < By d < By d < By d < By
Server, Ts negligible m < (a®S® — rC’,-m-t)ﬁ 0 m < (asss)ﬁ
Wireless, Ty, d< By m < BaorK d < By m < B
Client, T¢ m < n(aS) negligible m < n(aS) negligible
Comparison Simplified Comparison
Wireless, Ty m<F’1_F(%:_i m<ﬁ%:
about latency. In other words, it would be a shame if same. One could reduce latency by making balanced im-

time-critical data were delayed from reaching the client.
Which approach leads to less latency, say, from the time
it reaches the server until the time it reaches the client ap-
plication? Consider the flow of a specific data item through
the pipeline: it is processed on the server, transmitted on the
wireless network, and processed on the client. It must share
each of these resources with other data items in its chunk,
and it must share the server and wirel ess network with other
clients. On average, each of m agents may require only
L T4 CPU time on the shared server. If the server divides
itstime finely and evenly, all tasks will complete their com-
putation at time T's 4. If the server dividesits time coarsely,
the average task completesin half that time, at time %Ts A-
A similar analysis can be made for the wirel ess network.

Assuming fine-grain sharing of the server and network,
the latencies are

Ly =
Lp =

Tsa+Twa+Tca (23
Tsp+Twp +1cnB (24)

If we ignore the arrival of new agents (i.e., » = 0), and
assume that al clients are identical, we have

mp ~ mDE'F

L = — 40 25

A asSs + Ba + ( )
D mpu

L = 04+ — 26

B + By + natS¢ (26)

Unfortunately it is difficult to compare these two without
specific parameter values.

We wonder, however, about the value of such a latency
analysis. Given a specific data rate d, one must choose a
server speed, wireless network bandwidth, and client speed,
that can just keep up with the data flow. That is, intimein-
terval ¢ those three components must each be ableto process
D data. Their latency is 3t. With sufficiently small ¢, say,
1-10 seconds, it seems likely this latency would suffice for
most applications. Although one approach may have alittle
less latency than the other, the data flow rate remains the

provements to the two components with non-zero latency;
this improvement may be easier in the agent approach, be-
cause it may be easier to upgrade the server than thousands
of clients.

4. Model parameters

To explore some of the performance space represented
by the model, we need reasonable values for key param-
eters. In the context of the Fleet Battle Experiment (Sec-
tion 2) we have B = 768 kbpsand K = 8192 hits. Using
the extrapolation to a redlistic situation, FBE-Echo antici-
pates F'F = 0.005, r = 10/second, and d = 600 kbps
(based on 5 sensors, each generating 100 reports per second,
at 150 bytes per report). This combination of parametersis
realistic and conservative, in that it allows the broadcast ap-
proach to succeed (becaused < B).8 Let uspresumethat an
average agent monitors 2 of the 5 sensors, that is, '/ = 0.4.
Thus, if we accumulatereportsfor at = 10 second interval,
the total amount of data D = 6 mbits, and the agent must
process DF' = 2.4 mhits.

Unfortunately CAST was not instrumented to record any
specific information about the computational cost or soft-
ware overhead o of the CAST agents. Thus, to measure the
value of the other model parameters, we constructed asmall
test environment consisting of two Linux laptops, a Linux
workstation cluster, and a wireless network. One laptop
served as the wireless client machine. The other |aptop ran
routed to serve as a gateway between the 2 Mbps wire-
less network and the 10 mbps wired network. Our server
cluster contained 14 Linux workstations. We treated the 14
machines as asingle logical server, because we needed that
many to effectively measure 3, as we describe below. The
platform can be envisioned as shown in Figure 3.

When measuring parameters related to mobile

8In practice, the SHF satellite network was congested due to other traf-
fic; athough we do not model this congestion, it would only lead to a
stronger case for mobile agents since they require less bandwidth.



Wired/wireless
gateway

Server cluster

Figure 3. The experimental platform, in which
the server is a cluster of workstations, send-
ing its data through a wireless gateway ma-
chine to the wireless network.

[Client: Gateway Solo 2300 laptop; Intel Pentium
MMX 200 MHz, 48MB RAM, running Linux 2.0.36.
Gateway: Tecra 500CS laptop; Intel Pentium 120
MHz, 16MB RAM, running Linux 2.2.6. Servers:
VA Linux VarStation 28, Model 2871E; Pentium |1 at
450 MHz, 512K ECC L2 Cache, 256MB RAM, run-
ning Linux 2.0.36. Wired network: the gateway was
connected to a 10 mbps Ethernet, through a hub, a
10 mbps switch, and a 100 mbps switch, to the server
cluster. Wireless network: 2 Mbps Lucent WaveL AN
“Bronze Turbo” 802.11b PC cards configured at 2
Mbps.]

agents, we used the Dartmouth mobile-agent system
D’Agents [Gra97, Gra96] as an example of a canonical
mobile-agent platform. Although the CAST application
used a different mobile-agent platform, it was sufficiently
similar to D’Agents for the purposes of the experiments
here.

4.1. Measuring a

Because the language, compiler, and run-time system
impose overhead, the client runs at a fraction a ¢ of the full
speed S¢, and the server runs at a fraction o® of the full
speed S*. Unfortunately, we do not know and cannot di-
rectly measure S.° On asingle host of speed S, though, we
can run a compiled C program and a comparable Java pro-
gram, to obtain oS and o® S, and divide to obtain a/a®.

We wrote a simple image-processing application (an
edge detector) in C, and then ported it to Java. We ran
them both on one of our servers, using a sample image; *°
averaged over 100 runs, the Java program took 111 mil-
liseconds and the C program took 83 milliseconds. In this
measurement, we include only the computational portion of
the application, rather than the time to read and write the

9Recall the difficulty of measuring the “peak performance” of an ar-
chitecture, and all the discussions about the value of MHz and MIPS as
metrics of performance.

10The image size was 308,378 bytes, or 2,467,024 bits, approximately
thevalue DF’ = 2.4 mbits we mentioned above.

image files, since in our modeled application the data will
be streaming through memory, rather than on disk. These
numbers give a®/a’ = 0.75, i.e.,, C was 25% faster than
Java.

4.2. Measuring 3

The raw bandwidth of our WaveL AN wireless network
was 2 Mbps (that is, 2,097,152 bps). To obtain g val-
ues, we measured the transmi ssion speed of sample applica
tions transmitting data across that network, and divided by
2 Mbps.

To compute 3, for the broadcast case, we wrote asimple
pair of programs; one broadcast 4999 data bl ocks of 50,000
bytes each across the wireless link, for the other to receive.
Thetransmission completedin 1135 seconds, whichimplies

that
4999 x 50,0008 x 8b/B

By = 1135 sec
_ By, 1,761,762 bps

= = 3,007, 152 bps
In other words, broadcast of these reasonably large chunks
of datais 84% efficient.

To compute 3, for the agent case, we wrote a simple
agent program that visits the server, and sends about 50 KB
of documents every 3 seconds. The agent completes after
sending 500 of these 50 KB messages. The effective band-
width is computed as the total amount of data transmitted
divided by the time required to transmit the data, including
the time sleeping. To better reflect the modeled application,
we actually sent out several agentsto different hosts within
our server cluster, and increased the number of agents and
hosts until we reached the highest possible total bandwidth.
We found that 14 agents, running on separate hosts within
the server cluster, reached almost 1.5 mbps. Specifically,

B, _ 1,484,144 bps
B 2,097,152 bps

(27)

= 0.840 (28)

Ba = = 0.708 (29)

4.3. Measuring Cipi

When hosting agents, the server needs to support all of
their computational needs. In addition to the processing
time required to filter the data, new agents come and old
agentsexit. In our model, r agents come and go, per second,
on average. We model the computational overhead of each
agent’s start and exit as C';,,;;. We wrote atrivial agent and
arranged for one of our server hoststo rapidly submit agents
to another server host. After 5000 submit/exit pairs in 204
seconds, we conclude that the overhead C';,,;; is about 40
milliseconds (actually, it is the number of operations corre-
sponding to 40 milliseconds). It may be less, because our
measurement was based on wall-clock time, not CPU time,
and this experiment did not max out the CPU.



5. Results

We now use these parameters in our equations to get a
sense of how they react under specific conditions.

Unfortunately it is difficult to get actual u, «, and S pa-
rameters, although we did measure someratios above. If we
assume, however, that our edge-detection algorithm is rep-
resentative of one sort of filtering operation, we do know the
time it took to execute that operation. On our client laptop
we measured

7]
acsSe

= 236 milliseconds (30

That represents the time needed to process one 308 KByte
(precisely, 2,467,024 bit) image; that is, approximately
DF'" = 2.4 mhits for t = 10 seconds. Equation 19 tells
usthat

t

m/n < aCSC; (31
— 10/0.236 (32)
- 4 (33)

That is, about 42 tasks per client, for an arbitrary number
of clients n. Seen another way, if the filter requires 2.36%
(236 milliseconds of the 10-second interval) of the client’s
CPU, the client could support 42 such filters. Of course, the
client machine should reserve some power for consuming
the data after filtering, so it should not run anywhere close
to 42 filters.

Similarly, on the server, if we ignore r, Equation 6 tells
us that
t
u
The machineswe used as “servers” in our experimentswere
not particularly speedy. It is more interesting to derive an
equation for m in terms of the relative power of the server
and client, using quantities that we already have measured:

m < (a”5%) (34)

m o< 5 (35)
U

aCSC as SS

= (36)
1 S5

- 1 om2a 7
0236 5ec 0 72) 5e (1050) (37)
- 31.7% (38)

Figure 4 showsthetotal number of agents (for al clients)
that could be supported as the power of the server S ¢ grows
relative to the power of the clients S ¢, for our 236 millisec-
ond sample task as well as three other possibilities. The
plot shows ratios .S*/S¢ reaching up to 20, which is easily
obtainable when clients are portable computers.

1600 — T T T T T T T T

1% of client
1400 -

1200 -
1000 -
800 — -

) .
600 2.36% of cl|e‘n(t/_

Maximum number of agents, m

400 - Ut -

200 -7 10%ofclient”—_

e B G et
0 Ebazozs E Rt | 1 1 [ IO D [ T

2 4 6 8 10 12 14 16 18 20
Relative server power, Ss/Sc

Figure 4. The number of agents that can ef-
fectively be supported, as the server power
grows relative to the client’s power. We show
four curves, representing different possible
computations; 2.36% represents our image-
processing sample application. In the broad-
cast case, each client could support 100 tasks
(1%), 42 tasks (2.36%), 10 tasks (10%), or
2 tasks (50%), for an arbitrary number of
clients.

In Figure 5 we show the constraints on m, in the agent
case. This graph plots the two constraints from Table 1,
as d varies. The actual constraint is the minimum of the
two curves. For lower F'F, the server’s computation is
the tighter constraint; for higher F'' F', the wireless network
bandwidth limits us more. As a basis for drawing these
curves, we reconsider the exampleinspired by FBE-Echo—
that is, d = 600 kbps, ¢ = 10 seconds, and F' = 0.4— and
measure the image-processing application running on the
server (u/a®S® = 111 milliseconds, as described earlier).
Of course, in nearly any application p will vary with D (and
thuswith d and t); for the purposes of thisillustrative graph
we assume the computation is linear. In other words, we
imagine that 1 may behave as follows.

I D

YT = 111 milliseconds x 10 seC x 600 Kbps (39)

In Figure 6 we look at similar results when we vary r
(the previous graph assumed r = 0). In Section 4.3 we
measured o

init

G = 40 milliseconds (40)
and in Section 4.1 we measured
- S"SS — 111 milliseconds (41)

andfor afixedt = 10 seconds, the computational constraint
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Figure 5. The maximum number of agents m
we can support, given the constraints in Ta-
ble 1. Here B = 768 kbps,r = 0, 8, = 0.708,
t = 10 seconds, and u is proportional to D,
as described in the text. The computational
limit is coincidentally the same as the band-
width limit for F'F = 0.010.

from Equation 6 is

a’S? T'Cim't

m < ( )t (42)
7 7
- (llllms—r14101"r:fs)(109ec) (43)

Again, the actual constraint is the minimum of the two
curves. For lower F'F, the server’s computation is the
tighter constraint; for higher F'F, the wireless network
bandwidth limits us more.

In Figure 6 the bandwidth-constraint lines are close to
horizontal, since in FBE-Echo the 1 KByte agents are small
enough that the transmission of the agents does not have a
significant effect on the wireless network. As shownin Fig-
ure 7, on the other hand, the behavior is dramatically dif-
ferent when the agents are larger. For large agents and high
birth/death rates, the traffic induced by the jumping agents
(r K) consumes the available bandwidth B, leaving noth-
ing for agents to transmit their data. Clearly, such a system
can support few agents when the agent size is large or when
the birth/death rateis high. This result emphasizes the need
to include some kind of code caching in any mobile-code
system, so that the same agent code is not transmitted re-
peatedly across the wireless link.

Another useful way to look at the results is to graph
the bandwidth required by either the agent approach or the
broadcast approach, given certain parameters. In Figure 8
we vary the filtering ratio, since it clearly has a large im-
pact on the bandwidth required by the agent approach. For
low filtering ratios, the agent approach needs|ess bandwidth
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Figure 6. The maximum number of agents
m we can support, given the constraints in
Table 1, as we vary r. Here we use pa-
rameters K 1 KByte, B 768 kbps,
d = 600 kbps, 8. 0.708, t = 10 sec-
onds, Cinit/(a®S®) = 40 milliseconds, and
p/(a®S?) = 111 milliseconds.
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Figure 7. For comparison with Figure 6, we
fix F'F = 0.005 as in FBE-Echo, and instead
display the bandwidth limit with K = 1, 10,
or 50 KBytes. Other parameters are the same
as in the preceding figure.
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Figure 8. The bandwidth requirements for
agent and broadcast approaches. Here d =
600 kbps, B 768 kbps, r 10/second,
K 1 KByte, Ba 0.708, and S,
0.840. Note that the bandwidth required by
the broadcast approach is d/f3s, and appears
above d.

than the broadcast approach. If d > B (not shown), of
course the broadcast approach cannot work at all, and the
agent approach is the only solution.

In Figure 9 we show the relationship between the number
of agents and the necessary filtering ratio. Another view
on the earlier charts, this clearly shows that, to support a
large number of agents, those agents must be aggressively
filtering the input stream.

Inall, it is clear that there is a wide range of situations
in which mobile agents are more efficient than the broad-
cast approach. Unless the number of clients is very large,
the filtering ratio of each task is high, or the size or com-
putational demands of each task is high, the mobile-agent
approach has promise.

6. Related work

Performance modeling of computer networks and dis-
tributed applications is an old field, and our approach and
resulting equations are similar to many previous analyses
of distributed systems [Kin90]. In addition, there has been
some similar modeling work specifically for mobile-agent
systems.

Strasser and Schwehm [SS97] develop a general model
for comparing the performance of Remote Procedure Calls
(RPC) with the performance of migrating agents. Using
their model, which is best-suited for information-retrieval
applications, they derive egquations for the total number of
bytes transferred across the network, as well as the total
completion time of the task. The equations include such
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Figure 9. The relationship between the filter-
ing ratio and the number of agents in the
server. Other parameters are as before: B =
768 kbps, d 600 kbps, K 1 KByte,
r = 10/second.

parameters as the expected result size and the “selectivity”
of the agent (i.e., how much irrelevant information the agent
filters out at the data site, rather than carrying with it for fu-
ture examination). Their byte equations are similar to our
bandwidth equations, although their time equations are not
directly applicable to our scenario, since we are interested
only in whether the server can keep up with the incoming
data streams, not with the total completion time.

Kipper and Park [KP98] examine a signaling applica-
tion inside a telecommunications network, and compare a
mobile-agent approach with a stationary-agent (or client-
server) approach. Starting with a queuing model of a hi-
erarchical signaling network, they produce equations that
specify the expected load on each network node in both the
mobile and stationary cases. These equations are similar to
our server-load equations (from which we derive the con-
straint on how many agents the server machine can handle
simultaneously).

Picco, Fuggettaand Vigna[Pic98, FPV 98] identify three
main design paradigms that exploit code mobility: remote
evaluation, code on demand, and mobile agents. Within
the context of a network-management application, i.e., the
polling of management information from a pool of network
devices, they analyze these three paradigms and the tradi-
tional client-server paradigm. They devel op analytical mod-
els to compare the amount of traffic around the network-
management server, as well as the total traffic on the man-
aged network. These models are similar to our bandwidth
models.

More recently, Puligfito et al. [PRS99] use Petri nets
to compare the mobile-agent, remote-evaluation and client-
server paradigms. The key parameters to the models are



transition probabilities that specify (1) whether atraditional
client or agent will need to redo an operation, and (2)
whether a client or agent will need to perform another op-
eration to continue with the overall task. Using the mod-
els, they compare the mean time to task completion for
the three paradigms. Like the the work of Strasser and
Schwehm [SS97], these Petri-net models are well suited
for information-retrieval applications, are more general than
the modelsin the other papers, and are not directly applica-
ble to our scenario, which involves continuous filtering of
an incoming data stream, rather than a multi-step retrieval
task. Petri nets, however, could be a useful analysis tech-
nique for our scenario.

In addition to the mathematical analyses above, there
has been a range of simulation and experimental work for
mobile-agent systems. Recent simulation work includes
[SHG99], which considers the use of mobile agents for
search operations on remote file systems (such as the stan-
dard substring search of the Unix grep command), and
[BP99], which examines the use of mobile agents for mes-
sage delivery in ad-hoc wireless networks. Recent exper-
imental work includes [SDSL99], which compares differ-
ent strategiesfor accessing a Web database, and [GCKRO00],
which compares RPC and mobile-agent approaches for ac-
cessing a document database. Although we have not done
simulation or experimental validation of our modd yet,
such validation is an essential part of future work.

In our broadcast scenario all of the data are broadcast.
In our agent scenario each agent sends its own copy of the
filtered data to its client, regardless of whether other clients
may also want the data. We may be able to use techniques
from the domain of “broadcast publishing” to obtain amore
efficient compromise approach [1VV96].

7. Summary and future work

The FBE-Echo experiment is a good example of an ap-
plication in which only a small portion of the available in-
formationisrelevant to thetask at hand. Although the FBE-
Echo experimental results suggested that mobile agents
were achieving significant bandwidth savings, the aggres-
sive FBE testing schedule did not allow adirect comparison
with atraditional client/server implementation. For thisrea-
son, we devel oped the model described in this paper, which
confirmsthat mobile agentswill often have asignificant per-
formance benefit in filtering applications. With small filter-
ing ratios (F'F) or a small numbers of agents, a mobile-
agent approach can get by with less bandwidth or slower
(i.e., cheaper or lighter) clients. At the sametime, our anal-
ysis reinforces the importance of the engineering challenge
of keeping o® and 3, large, that is, reducing the overhead
of mobile-agent computation and communication.

To further develop this performance analysis and to use
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it in awider range of applications, we need to better under-
stand several issues. How variable is the input data stream
in terms of its flow rate? In other words, how much buffer-
ing would be necessary in the server and the clients? How
many different agent/task types are there in typical applica-
tions, and how widely do these types vary? How much CPU
time is needed to support the network protocols? Are aver-
age or expected numbers acceptable, or do we need worst-
case analysis?

Furthermore, we need to address a few limitations: (1)
the broadcast case assumes that nobody misses any trans-
missions, or that they do not care if they miss it, so there
are no retransmissions; (2) both cases ignore the client pro-
cessing consumed by the end application; and (3) we con-
sider only one application scenario. While the application
scenario is widely representative, there are certainly other
application types worth analyzing. In particular, we would
like to consider scenarios in which the mobile agents move
up and down a hierarchy of gateway machines. We are
also interested in the use of mobile agents as adynamically
distributed, and redistributed, cooperative cache to support
mobile computersin awireless network.
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