
An Access-Control Calculus

for Spanning Administrative Domains

Jon Howell∗

David Kotz

Technical Report PCS-TR99-361
Department of Computer Science

Dartmouth College
Hanover, NH 03755-3510

{jonh,dfk}@cs.dartmouth.edu

Abstract

In our quest to give users uniform access to
resources unimpeded by administrative bound-
aries, we discovered that we needed transitive
sharing among users, with the possibility of
restricted access along each sharing link. To
achieve that goal, we extend Lampson et al.’s
calculus for access control to support restricted
delegations.
We discuss the advantages of our extension, in-
cluding the simplification of constructs like ACLs
and statement expiration. We also apply our
extension to model the Simple Public Key In-
frastructure and make suggestions about its fu-
ture development. Our extended calculus ex-
poses some surprising consequences in such sys-
tems that use restricted delegation.

1 Introduction

Users should be able to access resources
uniformly, seamlessly crossing administrative
boundaries when they are not relevant to the
task the user is trying to accomplish. One of
the most difficult aspects of achieving that goal
is finding an architecture for security that spans
administrative domains. Most security architec-
tures are woven into a specific system model,

∗Supported by a research grant from the USENIX As-
sociation.

most of which treat a “system” as a unit ad-
ministrated locally, or at best, in a hierarchy of
domains.
In the real world, however, sharing happens
across administrative domains. In Figure 1, Al-
ice has access to a resource, and wants to share
some of her access with Bob, who further wishes
to share part of his access with Charlie. Con-
ventional systems, based on Access Control Lists
(ACLs), make this sort of sharing very difficult.
First, each remote user must appear as a princi-
pal in the domain where the resource lives. Sec-
ond, to implement each restriction, each user in
the chain would need to be able to modify the
ACL of the original resource. In this paper, we
present a system that can model such chains of
delegation satisfactorily, regardless of how they
traverse administrative domains, or of the fact
that each user may restrict what he shares with
the next.

1.1 Background

Distributed systems that support multiple ad-
ministrative domains are typically organized as
a hierarchy. It is a start, but in essence, the hi-
erarchy itself is still one large administrative do-
main. Sharing with users outside the hierarchy
has the same problems as systems that model
only a single administrative domain. It is un-
likely that we can expect all or most users and

1

Database
Server

service request
reply

all

insects
observations

field

re
ad

pe
rm

is
si

on

computing center

university of wiggleschnauzerbushwhack institute

mom’s
house

Alice

Bob

Charlie

Merlin

Figure 1: A chain of delegation that spans
administrative boundaries. The straight arrows
represent actual communication, and the arcs
represent delegations with restriction. Charlie’s
permission is limited by each of the restrictions
on the path of delegation between himself and the
database resource.

organizations to subscribe to a single adminis-
trative hierarchy, especially when trust between
distant parties requires putting trust in common
root nodes: those nodes will have disproportion-
ate power.
In the real world, users do share resources
across administrative boundaries. Users need
to share resources to do their work, so they
find ways to move the resources. Imagine Bob
has partial access to a resource owned by Alice.
Bob may give Charlie a copy of a resource; but
copies cannot support reference semantics. So
Bob might share his identity, such as by shar-
ing a password. Or he may set up an “oracle”
that accesses the resource in the Bob’s name, on
Charlie’s behalf, for example, by putting a lo-
cal link to the resource into his publicly-visible
ftp or http directory. All three methods prevent
Alice from auditing the proxied access.
The calculus for access control described by
Lampson, Abadi, Burrows, Wobber, and Plotkin
is an excellent start toward a system that
solves the transitive sharing problem [LABW92,
ABLP93]. (For brevity, we refer to it as Lamp-

son’s calculus.) Their system is based in a formal
logic, and can express several natural security
concepts. Delegations in their system can span
administrative domains, since they are between
arbitrary principals. Auditing is preserved, be-
cause every access must ultimately be grounded
in a chain of delegation showing the resource
owner how the object came to be shared with
the user making the present request. The cal-
culus, however, has a critical limitation: restric-
tion of access is based on ACLs. So even though
users can share resources with others freely, they
cannot restrict the sharing at each link. If the
system cannot model the needed policy, users are
likely to share without restriction for expediency,
even when it is the wrong security decision.
The Simple Public Key Infrastructure (SPKI,
pronounced “spooky”) is a recent Internet Ex-
perimental Protocol [EFL+99]. It too facilitates
sharing across administrative boundaries, but it
also dispenses with ACLs in favor of allowing re-
strictions along each sharing link. Unfortunately,
SPKI is not presently based in a formal logic as
is Lampson’s calculus; it offers only a suggested
implementation of a decision procedure. It also
discards some of the expressivity of Lampson’s
calculus.

1.2 Contributions

We began this work by starting with Lampson’s
calculus, and extending it to include restricted
delegation. The purpose of the extension was
to inform a distributed system implementation
that supports transitive sharing. Upon learning
about SPKI, an implementation very close to the
one we envisioned, we set out to use our extended
calculus as an underpinning for SPKI, and to
show how SPKI may be extended while retaining
the confidence derived from a formal logic.
Our extension to Lampson’s calculus has three
important contributions. First, we support our
goal of transitive sharing with restriction at each
link. Second, the notion of ACLs go away, re-
placed by restricted delegation. Restriction that
used to happen in an ACL is now expressed in
the first link of a delegation chain, between the
resource provider and the principal that would

2

have been listed in the ACL with restricted per-
mission. Third, delegation restrictions naturally
model expirations and other time restrictions.
Where Lampson’s calculus has a separate mech-
anism to incorporate expirations, ours naturally
incorporates expirations directly into the central
concept of restriction.
By extending Lampson’s calculus, we retain
several useful features that we can then apply to
current work, such as SPKI. First, we retain its
formal nature, including a formal semantics that
justifies the logic and any implementation based
on the logic. The semantics provides an intuitive
mathematical basis for the consequences of the
system, as well as promise of consistency in the
resultant logic. The semantics also suggests op-
portunities for consistent extensions, and warns
us away from imprudent extensions. Second, the
logic is simple. It has only four basic concepts:
statements, principals, names, and restriction
sets. A complex implementation such as SPKI
may be mapped into these simple concepts, en-
hancing its comprehensibility. Third, we retain
the notion of general principals, including those
with only indirect representations. For example,
quoting principals allow multiplexed resources to
work for multiple users while deferring access-
control decisions to a central location, minimiz-
ing the trusted computing base (TCB). This fea-
ture helps avoid traps such as Unix set-UID-root
daemons that end up implementing access con-
trol decisions and extending the TCB.

1.3 Overview

This version of the paper begins with three sec-
tions of review material. We begin with a brief
introduction to modal logic and its semantics in
Section 2, followed by a review of Lampson’s
calculus and its notation in Section 3, and an
overview of SPKI in Section 4. All three sec-
tions are presented in a tutorial style, but none
of the work is our own. The erudite reader may
skip any or all of these sections.
In Section 5 we introduce our restricted dele-
gation extensions to Lampson’s calculus, explore
variations on it and paths not chosen, and dis-
cuss its advantages in more detail. In the fol-

lowing section, Section 6, we develop extensions
to the logic and semantics to support SPKI-style
linked local namespaces.
In Section 7, we cast SPKI into our extended
calculus, showing some of the assumptions SPKI
depends upon. Next, we explore the subtle
consequences of restricted authorization in Sec-
tion 8. Our own plans for using the calculus are
outlined in Section 9. We discuss related work
in Section 10, and summarize our results in Sec-
tion 11. The Appendix provides proofs of claims
appearing in the paper.

2 The logic of belief

The Sicilian smiled and stared at the wine
goblets. “Now a great fool,” he began,
“would place the wine in his own goblet,
because he would know that only another
great fool would reach first for what he was
given. I am clearly not a great fool, so I
will clearly not reach for your wine.”

“That’s your final choice?”

“No. Because you knew I was not a great
fool, so you would know that I would never
fall for such a trick. You would count on it.
So I will clearly not reach for mine either.”
[Gol73, p. 157]

Modal logic is the logic of belief. One way
to reason about permissions and sharing is to
reason about who believes what. We call par-
ticipants in a distributed system agents, and the
symbols that represent agents in logical expres-
sions principals. Principals can also represent
sets of agents, or one agent quoting another;
these are called compound principals, and we dis-
cuss them in Section 2.1. If Alice believes every-
thing Bob believes (that is, Alice trusts Bob in
every matter), then if Bob believes it is good to
read a given file, Alice must believe the same.
In this section, we develop a model for reasoning
about logic in the presence of belief.
We begin with propositional logic. Assume
there is a set of primitive (uninterpreted, inde-
pendent) statements Σ.1 For our purposes of

1Figure 4 provides a table of sets and variable notation
used in this paper.

3

access control, we consider primitive statements
such as “it is good to write to file X.” This in-
terpretation turns an imperative command into
a declarative proposition. The primitive state-
ments may be connected with and (∧) and not
(¬) to form arbitrary formulas. The or (∨)
and implies (�

�) operators are abbreviations for
longer formulas made of ∧ and ¬.
Next we introduce a modal operator
believes .2 If σ is a formula and principal
A represents agent Alice, Abelievesσ is a
formula that can be read “Alice believes σ
is true.” In time, we will introduce multiple
believes operators, one per principal. For
now, we would like to build a model that helps
us understand which formulas A believes; that
is, for which σ do we have Abelievesσ?
To model this logic, we build a Kripke struc-

ture. A Kripke structure is a tuple of sets
M = 〈W, I, J〉. The members of setW represent
possible worlds. The function I maps a primi-
tive proposition (s) to the set of worlds where
it is true, and the function J maps a principal
to a relation on worlds in W . Together, I and J

determine the truth value of every formula in ev-
ery world inW ; we describe them in more detail
shortly.
First, some intuition: A principal A living in
world w0 considers some other set of worlds pos-
sible, and if a formula σ is true in each of those
other worlds, then A believes the formula. The
interesting thing about possible worlds is that
the set of worlds A considers possible captures
what she does not know: if a statement σ ap-
pears in one possible world and ¬σ appears in
another, then A knows neither σ nor ¬σ. As far
as she is concerned, σ could go either way, be-
cause A cannot tell which of the possible worlds
she actually is in.
When we write M, w0 |= σ (pronounced “M
at w0 models σ”), we mean that in modelM at
world w0, the formula σ is true. The mapping
I tells us immediately about the truth of primi-
tive propositions at different worlds, but we wish
to determine the truth of arbitrary statements

2In conventional modal logic, Abelieves σ is written
2Aσ.

σ, including propositional connectives and our
modal operators (σ = Abelievesτ). We illus-
trate with an example structure, shown in Fig-
ure 2.
The model contains three primitive state-
ments, l, b, and p. The statement l means that
our agent Alice (A) is in the produce depart-
ment of a grocery store. Its negation, ¬l, means
that Alice is in the meat department (it’s a small
store). The b primitive means that the store’s
bananas are yellow, and the p primitive means
that the store’s pork is fresh.
Recall the three parts of a model, 〈W, I, J〉.

W is the set of possible worlds; in our case,
since there are three primitive statements, there
are at most eight: W = {w0, w1, . . .w7}. I
is a relation that defines which primitive state-
ments are true at which worlds. In our example,
I(b) = {w0, w1, w4, w5}, since the bananas are
only yellow in those four worlds. Finally, J is a
function that maps principals to relations. Be-
cause we have only one principal (Alice), J has
only one mapping, written J(A). The relation
J(A) is depicted with arrows in the diagram. For
example, 〈w0, w1〉 ∈ J(A); that is, when the ac-
tual world is w0, w1 is a world Alice considers
possible. In our example, it happens that Alice
considers two worlds possible from each world.
Assume for a moment that the actual world is
in fact w0: Alice is in the produce department,
the bananas are yellow and the pork is fresh. If
Alice were omniscient, she would consider only
w0 possible, for that is indeed the state of things.
Alice, however, is merely a shopper. She cannot
see from the produce department what is going
on in the meat department, and thus she cannot
tell if the pork is fresh. She must also consider
possible world w1, where the pork is spoiled. She
knows for certain her own location, though, so
she can ignore worlds w4 · · ·w7. Because she is
in the produce department and can see the ba-
nanas, she can also ignore worlds w2 and w3 in
which the bananas are green.
We have explained the two arrows emanating
from worldw0. The other arrows in the diagram,
comprising the relation J(A), communicate the
same sort of information about any other state
of affairs. For example, if the actual world were

4

0 w1

ww

ww

ww

w

76

54

32 l

b

p
p

b

l

the pork is spoiled
the pork is fresh
the bananas are green
the bananas are yellow
agent is in meat department
agent is in produce department

 p

p

bpb

l
p

l

b
l

pb
l

 b

 p

 p b

 l l

 l l
 b b p

Figure 2: A model of eight worlds (circles), illustrating the relationship between the accessibility
relation (arrows) and the the modal operator (A believes).

w1 (the pork is in fact spoiled), Alice considers
just the same worlds w0 and w1 possible, and for
the same reasons.
Now that you have the intuition behind the
Kripke structure, we can formally define when
various statements are true. Primitive proposi-
tions are easy: the casual definition of I above
becomes:

M, w0 |= s when w0 ∈ I(s)

This definition can be read “Statement s is true
at world w0 in model M when w0 is in the set
I(s).”
What about formulas constructed from the
propositional connectives ∧ and ¬? The truth of
some complex formula σ in a world is completely
determined by the truth of its primitive proposi-
tions, which the model defines by the mapping I .
So we can formally define an extension function
E to extend the definition of I to arbitrary for-
mulas. E is defined recursively starting with I ,

and extends as you would expect for the propo-
sitional connectives:

E(s) = I(s)
E(¬σ) =W − E(σ)

E(σ ∧ τ) = E(σ) ∩ E(τ)
Not surprisingly, ¬σ holds in exactly those
worlds where σ does not, and σ ∧ τ holds in ex-
actly those worlds where both subformulas hold.
Take a look at the example structure and con-
vince yourself that E(b ∧ ¬p) = {w1, w5}.
We embarked on this journey to discover when
Alice believes various statements, so we need to
find out when the model supports formulas in-
cluding our modal belief operator. The natural
intuition is that Alice should believe a statement
whenever it is true in every world Alice considers
possible. To recall our example, b is true (the ba-
nanas are yellow) in every world Alice considers
possible from w0, soM, w0 |= Abelievesb. But
because Alice considers w0 and w1 possible, she

5

considers both p and ¬p possible; and so she can
believe neither; hence we have ¬(Abelievesp)
and ¬(Abelieves¬p) at world w0. (You can
think of this situation as representing Alice’s “si-
lence” on the matter of p. Even though Alice as-
serts neither p nor ¬p, every formula is assigned
a truth value. It is just that both Abelievesp
and Abelieves¬p are false.)
With this intuition, we fill out the definition
of E to mention formulas containing our modal
operator Abelieves :

E(Abelievesσ) = {w|J(A)(w) ⊆ E(σ)}

J(A)(w) denotes the set of worlds that A consid-
ers possible from w.3 So when σ is true in every
one of these worlds (i.e., J(A)(w) ⊆ E(σ)), then
A believes σ (i.e. Abelievesσ).

Of course, security is not very interesting in
a world with only one agent. To introduce a
second principal, we simply add a new rela-
tion J(B) to our model. Now we can reason
about what Bob believes (B believesσ), and
even about what Alice believes about what Bob
believes (AbelievesB believesσ). (In our ex-
ample, we could certainly discuss Alice’s beliefs
about her own beliefs, but for our application to
access control, that is not very interesting.)

2.1 Compound principals

It is also possible to talk about compound prin-
cipals. Lampson defines two operators on prin-
cipals that can be used to make new compound
principals. The first is fairly easy to describe:
the principal A ∧ B believes only things that
both A and B believe. We can define a new
possible-worlds relation for the compound prin-
cipal in terms of the relations forA and B. To do
this, we extend the mapping J to a new mapping
R whose domain includes compound principals.
Like the definition of E , R is defined recursively

3Formally, J(A)(w) = {w′|〈w,w′〉 ∈ J(A)}.

starting with J:

R(A) = J(A)
∀ primitive principals A

R(A∧ B) = R(A) ∪ R(B)
∀ arbitrary principals A,B

And R replaces J’s role in the definition of E :
E(Abelievesσ) = {w|R(A)(w)⊆ E(σ)}
That set union operation is surprising! What’s
going on? Recall that the more worlds an agent
considers possible, the less the agent believes. In
our example structure, Alice could not believe p
because she considered world w1 possible, where
p was false. Likewise, by taking the union of
the relations for principals A and B to get the
relation for the compound principal A ∧ B, we
ensure that the compound principal is at least
as ignorant as either of A or B. If A and B
disagree on any statement σ, then A∧B can see
both worlds where σ is true and worlds where it
is false, so A ∧B can have neither belief.
The second operator for forming compound
principals is written B|A, and pronounced “B
quoting A.” (“Quoting” may seem an odd choice
of words when talking about belief; however,
when we translate our terminology into that of
Lampson et al., it reads more naturally.) This
principal captures B’s beliefs about A’s beliefs:
(B|A)believesσ should be synonymous with
B believes (Abelievesσ).
The relation for the compound principal B|A
is the composition of the relations of B and A:

R(B|A) = R(B) ◦ R(A)
What is the intuition for using composition?
Suppose we have M, w0 |= B|Abelievesσ: At
world w0, Bob (agent B) believes Alice believes
σ. That means that at every world Bob consid-
ers possible from w0 (R(B)(w0)), Alice believes
σ. But Alice only believes σ at those worlds if σ
is true at every world Alice can see from those
worlds: ⋃

w′∈R(B)(w0)

R(A)(w′)

6

The composition R(B) ◦R(A) relates w0 to just
this set. So B|Abelievesσ is true at w0 exactly
when σ is true in every world reachable from
w0 by the composited relation given above as
R(B|A).

2.1.1 The nature of principal relations

Now that we have a formal structure for dis-
cussing the beliefs of principals, let us consider
what kinds of beliefs are reasonable, and how
principals’ beliefs should be related to one an-
other’s.
Recall our example structure, where in any
world, Alice was either ignorant (had no belief)
about either the pork or ignorant about the ba-
nanas. The first observation is that agents do
not need to believe every true thing; statements
about which they have neither a positive nor a
negative belief represent something the agent is
ignorant about.
Furthermore, observe that Alice never be-
lieved anything false: in every world, if
Abelievesσ, σ also held in that world. In the
parlance of modal logic, we would say Alice’s
belief is actually knowledge: although she does
not have all knowledge, everything she believes
is in fact true. Why was this the case? Notice
that Alice’s possible-worlds relation is reflexive:
for every world Alice’s relation includes an edge
pointing back to that world. That is why Alice
cannot believe anything false. If σ is not true
in a given world, Alice cannot believe σ there,
because the definition

M, w |= Abelievesσ iff w ∈ E(Abelievesσ)
iff R(A)(w) ⊆ E(σ)

precludes it.
In modeling access control in the presence
of arbitrary principals, however, we should cer-
tainly expect that some principals will believe (or
at least claim to believe) untrue things. So we
make no restriction of reflexivity on the relation
that defines a principal’s beliefs. Indeed, a prin-
cipal may have an empty relation at a world: it
may consider no worlds possible! In that case, at
that world, the agent considers every statement

true, since every statement is true in all of the
zero worlds the agent considers possible. Indeed,
the agent believes false. The agent’s reasoning
has become inconsistent; other agents would be
wise not to follow this agent’s beliefs.

2.1.2 Trust

Agents following one another’s beliefs is exactly
how we model trust. If Alice establishes that she
believes everything Bob believes, then Alice does
not have to be present for Bob to read one of her
files: if Bob claims that reading the file would
be good, Alice must agree, and the file server
grants the request. To capture this trust, we ob-
serve that Alice is “less ignorant” than Bob: she
believes everything Bob believes, and then per-
haps more (on which Bob may remain silent).
Therefore, from any actual world, Alice should
consider possible a subset of the worlds Bob con-
siders possible. When R(A) ⊆ R(B), Alice says
everything Bob says; if she says even more, it is
because she disregards some possible world that
leaves Bob’s belief ambiguous. You should con-
vince yourself that if Bob believes σ, Alice has
to believe the same thing, for she considers pos-
sible only a subset of the worlds Bob considers
possible.

3 Lampson’s calculus

This section contains an introduction to Lamp-
son’s calculus for access control. The reader fa-
miliar with it may skip to the next section. In the
preceding section, we introduced an instance of
modal logic: propositional logic plus some modal
operators capture the possibly ignorant, possibly
false beliefs of fallible principals. The semantics
we presented, based on Kripke structures, is ex-
actly that used by Abadi to justify the calculus
for access control. We introduced the seman-
tics first, though, because conventionally the se-
mantics is the “intuitive model” of the world,
and the logic is a system for discovering theo-
rems (statements that are true in every model)
and reasoning from premises to conclusions that
must appear in the model.

7

To apply modal logic to access control, Lamp-
son renames the operators. First, “believes”
is renamed “says.” This is meant to capture
the notion that Lampson’s logic is performative:
sometimes when a principal says something, that
something becomes true. The act of saying to a
fileserver that a file should be modified, given
that the fileserver believes you, causes that file
to indeed be modified. This renaming makes the
quoting operator sound more natural: B|A is
Bob quoting Alice. B|A sayss is meant to be
a synonym for B saysA sayss. “Belief” is still
useful intuition, however. The operator is the
same; Bob’s belief in σ can be inherited by Alice
without Alice actually uttering σ.
A logic is a system of axioms and proof rules
that let one reason from premises to conclusions:
if the premise holds in a model, the conclusion
holds as well. Lampson’s logic is sound in that
any conclusion proven in the logic holds in the
model, but it is not complete: there are state-
ments that are true in every model that cannot
be proven in the logic. Abadi suggests that in
fact the model may be undecidable: no logic sys-
tem is adequate to prove every valid statement
of the model.
The logic of access control is the same (up
to variations in notation) as the conventional
modal logic system Kn. The subscript n indi-
cates that there are multiple modal operators
[HC96, FHMV95, page 51]. We present that sys-
tem here.
First, we write � σ if a statement σ is valid in
the logic: either taken as an axiom, or provable
as a theorem from other axioms and the proof
rules. We prove theorems using the following:

If σ is a tautology of propositional calculus,
then � σ (Axiom 1)

The axiom lets us pull in the theorems of propo-
sitional calculus without explicitly mentioning
the axioms and proof rules that produce them.

� σ � σ �

�τ

� τ
(Rule 2)

The proof rule (modus ponens) says that if both
σ and the implication σ �

�τ are valid (provable),

then τ is provable as well. It lets us prove the-
orems about formulas that include the modal
operators (says) by reasoning from premises to
conclusions.
We also have the Distribution Axiom (known
in modal logic as the axiom K, from which the
name of the system Kn derives):

� A says (σ �

�τ) �

�(A saysσ �

�A says τ)
(Axiom 3)

Intuitively it means that agents understand and
believe all of the consequences of their beliefs.
Furthermore, they believe every theorem:

∀A,
� σ

� A saysσ
(Rule 4)

That is, agents know all of the theorems of the
logic.
There is a subtle but important distinction be-
tween implication in the metalogic (the proof
rule above) and implication in the logic. The
logical symbol � means that the premises on its
left prove the conclusions on its right. The proof
rule condition � σ means that no premises are re-
quired to prove σ; that is, σ is a theorem. When
that is true, we may conclude � A saysσ: it is
proven that A saysσ.
In contrast, the corresponding statement in
the logic (not the metalogic) does not hold. The
statement � σ �

�A saysσ is read “it is not prov-
able that σ implies A saysσ.” The premise of
the implication is an arbitrary statement σ (un-
like the theorem � σ in the proof rule); it is not
true that principals say every true statement.
They say every theorem (those statements true
in every world), but not every true statement
(those statements true in the actual world from
which the statement is being uttered).

3.1 The calculus of principals

The symbol = is an equivalence relation on prin-
cipals; by A = B we mean that A and B have
the same relation and therefore the same beliefs.4

4Abadi et al. “note that A and B can have the same
beliefs without having the same possible worlds relation;
however, because principals are identified by their rela-

8

(Later in the paper we also use = to denote set
equality; its use should be clear from context.)
We have presented the logical tools for reason-
ing about formulas of statements. Recall that we
can also combine principals into principal formu-
las. For example, A ∧ B is the principal that
believes (says) only things that A and B agree
upon. In the logic, A ∧ B is defined in terms of
its relationship to statements:

� (A ∧B) saysσ ≡ (A sayss) ∧ (B saysσ)
(Definition 5)

Principal conjunction is associative, commu-
tative, and idempotent:

� (A ∧B) ∧C = A ∧ (B ∧C) (Axiom 6)
� A ∧ B = B ∧A (Axiom 7)
� A ∧ A = A (Axiom 8)

Quoting (B|A) is defined as:

� (B|A) saysσ ≡ B says (A saysσ)
(Definition 9)

In a sense, the quoting operator “curries” a says
operation from the propositional formula into
the principal formula, so that one can talk about
a principal quoting another without yet mention-
ing the specific statement being quoted.
Quoting is associative and distributes over
conjunction in both arguments:

� (A|B)|C = A|(B|C) (Axiom 10)

� A|(B ∧C) = (A|B) ∧ (A|C)
� (A ∧ B)|C = (A|C) ∧ (B|C) (Axiom 11)

3.2 The “speaks for” relation

A central concept of the calculus is the “speaks
for” relation (⇒), which defines a partial order
over all principals. This relation encodes the no-
tion of one principal trusting another that we in-
troduced in Section 2.1.2. The statementB ⇒ A

tions in the semantics, we define equality in terms of rela-
tions.” This is only possible if the model has two distinct
worlds in W that belong to all the same I sets; that is,
the model has two separate but indistinguishable worlds.

is read “B speaks for A,” and means that when-
ever B says something, A certainly agrees. For-
mally, we define

� (B ⇒ A) ≡ (B = B ∧A) (Definition 12)

Why is this the case? If A trusts B, then A says
everything B says. So the set of things B∧A say
must be the same as the set of things B says. It
cannot be greater, by its semantic definition in
Section 2.1, and it cannot be less, or else there
is something B says that A does not.
From the definition we can derive:5

� (B ⇒ A) �

�((B saysσ) �

�(A saysσ))
(Theorem 13)

WhenB ⇒ A, B is a stronger principal thanA in
the sense that B can do everything A can do (by
making A believe the appropriate performative
statement), and perhaps more.
Using the associativity of ∧ for principals, it
is clear that ⇒ is a transitive relation:

� (B ⇒ A) ∧ (C ⇒ B) �

�C ⇒ A
(Theorem 14)

(The ∧ in the theorem is that for statements.
We would like to use a different symbol for clar-
ity, but we stick with Lampson’s notation here.)
Both the ∧ and | operators on principals are
monotonic with respect to ⇒:
� (A⇒ B) �

�((A∧ C)⇒ (B ∧ C))

(Axiom 15)

� (A⇒ B) �

�((A|C)⇒ (B|C))
� (A⇒ B) �

�((C|A)⇒ (C|B)) (Axiom 16)

With the speaks-for relation, we can finally see
why quoting is a useful operation. One can let
C|B ⇒ A, so that C can only speak for A when
it quotes B. Without quoting, we would need
a formal accounting for universal quantification
over formulas: ∀σ, C saysB saysσ �

�A saysσ.
5Surprisingly, Abadi drops Definition 12 and instead

treats Theorem 13 as an axiom. Doing so precludes theo-
rems with conclusions containing ⇒, since we are left with
no axioms with ⇒ in the conclusion. In fact, Theorem 13
requires only the weaker operator → in its premise, which
we discuss in Section 5.1.2.

9

The semantics of ⇒ falls out fairly directly.
Definition 12 requires that

M, w |= B ⇒ A

iff R(B) = R(B ∧A) = R(B) ∪ R(A)
iff R(A) ⊆ R(B)

Notice that the condition on the R relations is
independent of the world w. So the extension
function E is all-or-nothing for speaks-for formu-
las:

E(B ⇒ A) =
{

W if R(A) ⊆ R(B)
∅ otherwise

(Definition 17)

3.3 Access Control Lists

The speaks-for relation, because it is transitive,
lets us reason broadly about how principals’ be-
liefs affect one another. In the end, however, the
server wants to convince itself that some primi-
tive proposition s, perhaps to be interpreted “it
is okay to change the contents of the file,” is
true. To support this, Lampson uses the con-
struct A controls s to indicate that principal A’s
beliefs about s are taken to be truth. It is defined
as:

A controls s ≡ ((A sayss) �

�s) (Definition 18)

Now suppose B wants to write to the file that
s describes, and the assumptions � B ⇒ A and
� A controls s hold. Then the file server will be
able to verify a proof of � s, convincing itself that
“it is okay to change the contents of the file.”
Lampson encodes access control lists (ACLs)
using controls assumptions:

ACL (O1) =

� A controls sread,

� A controls swrite,
� B controls sread

By adjusting which principals’ assertions are be-
lieved, the ACLs allow or disallow agents to ef-
fect action.

3.4 Higher-level operators

The operating system that instantiates the cal-
culus requires resource servers to construct and

then verify all necessary proofs [WABL94]. Wob-
ber calls it a pull model: it is the servers’
job to pull in necessary assumptions and proof
components needed to verify an agent’s access.
Building such proofs, when assumptions include
speaks-for formulas with arbitrary combinations
of ∧ and | operators, takes exponential time. To
make the decision problem tractable, Lampson
defines two high-level operators, as and for , in
terms of the lower-level operators. Each opera-
tor is designed to reflect an idiomatic usage pat-
tern of the calculus. By defining the higher-level
operators, Lampson can restrict how the lower-
level operators combine, and exploit character-
istics such as associativity and idempotence. In
the abstract, the operators can be treated as ab-
breviations and replaced by their definitions, and
they do not affect the calculus. We cover them
here to demonstrate the idioms they represent.

3.5 Roles and the “ as ” operator

Lampson defines a distinguished, disjoint set of
principals called roles. By quoting a role, a
principal restricts its own authority. For ex-
ample, define the roles Ruser and Radmin rep-
resenting a person acting as a user and as an
administrator, respectively. Suppose the ACLs
in the system include A|Radmin controls s1 and
A|Ruser controls s2. In her daily work, Alice may
step into her role as user by quoting Ruser; when
she needs to perform administrative tasks, Alice
can explicitly quote Radmin to gain access to ob-
jects such as s1 that mention her administrative
role. More interestingly, Alice can delegate just
one of her roles to another principal by arrang-
ing that B ⇒ A|Ruser. Now Bob can do anything
Alice could do as a user, but he cannot access her
administrative resources. Roles can also be used
to sandbox untrusted code. When running un-
trusted software, Alice might delegate to it only
authority over A|Runtrusted, preventing the code
from accessing the bulk of her resources.
The as operator stands for quoting when the
quoted principal is a role. In a sense, as adds
strong typing, requiring that its right-hand ar-
gument be a role. In contrast to general princi-
pals, quoting is idempotent and commutative for

10

roles, and all principals automatically speak for
themselves in every role:

R|R = R ∀R ∈ Roles (Axiom 19)
R′|R = R|R′ ∀R, R′ ∈ Roles (Axiom 20)

A⇒ A as R ∀R ∈ Roles (Axiom 21)

By virtue of these special features of roles and its
strong typing, the as operator takes on idem-
potence and commutativity. This helps make
Lampson’s access control problem tractable.

3.5.1 Semantics for Roles

The axioms above are not supported for general
quoting, and yet as is simply an abbreviation
for quoting. Therefore, the axioms must be jus-
tified by some restriction on the possible-worlds
relations of the roles themselves. First we define
a special principal 1, the identity, who believes
everything that is true and nothing that is not:

R(1)(w) = w ∀w ∈W

In any given world, 1 considers only that world
possible. Therefore, it only tells the truth (the
relation is reflexive), and it tells the whole truth
(no world has multiple arrows, so it is confused
about nothing). The identity serves as the most
trusted role a principal can assume. Why? Aas1
is shorthand for A|1, so R(A as 1) = R(A) ◦
R(1) = R(A): the identity role does not limit
A’s authority at all.
All roles are principals whose relations are con-
strained as follows:

R(R1) ⊆ R(1)

This means that the role relation may contain
some edges 〈w, w〉 and not others, but no edges
that take one world to another world. A role,
when composed with another principal’s rela-
tion, cannot expand the set of worlds the prin-
cipal considers possible, only reduce it. See Fig-
ure 3 for an illustration.
We are now prepared to justify the axioms for
roles. The first property is idempotence. R(R1)
takes each world to either itself or nowhere, so
composingR(R1) with itself should do the same.

The second property is commutativity. An ar-
row appears in R(R1) ◦ R(R2) exactly when it
appears in R(R1) ∩ R(R2), and ∩ is commuta-
tive. Finally, A⇒ A asR1 is automatically true
when R1 is a role. Why? ComposingR(R1) onto
R(A) cannot introduce any new worlds (since the
arrows of R(R1) are all reflexive), but may elim-
inate worlds (when R(R1)(w) = ∅). Hence

R(A) ◦ R(R1) ⊆ R(A)

and we conclude A⇒ A as R1.

3.6 Delegation and the “for” operator

Besides encoding roles, quoting can be used to
encode delegations to trusted principals in a re-
stricted way. Here is the problem: Imagine that
both Alice and Bob log in to machine M . Using
just the speaks-for operator, Alice might estab-
lish that M ⇒ A and Bob that M ⇒ B. But
then when Bob (sitting at his terminal to ma-
chine M) tries to read a file that only A has
permission to read, M would say the request,
and the server would reason that A believed it.
In this situation, the access-control system can-
not help the server reason about whether the file
should be read, sinceM has not provided enough
information.
Instead, A could require that M explicitly
mention A whenever it makes requests on A’s
behalf: M |A ⇒ A. Now when M is working for
B, it will be quoting B, not A, and A’s file is
safe. If M were corrupt, of course, it could still
abuse the authority granted it by A. But quot-
ing principals helps an honest M pass the right
information to resource servers for access-control
decisions.
Lampson et al. define a slightly more compli-
cated concept of delegation from A to B, written
as the compound principal B for A. The key
idea behind delegation is that both the delega-
torA and the delegate B must take some explicit
action for the delegation to take effect:

A says B|A⇒ (B forA)
B|A says B|A⇒ (B forA)

11

◦ =

An arbitrary principal
relation R(A) . . .

. . . composed with a
role relation R(R) . . .

. . . gives a new rela-
tion that is always a
subset of R(A).

Figure 3: Roles reduce relations they are composed with.

from which, using the definition of for in Lamp-
son’s paper, we can conclude

(B|A)⇒ (B for A)

Then A installsBforA in ACLs for any resources
it wishes to allow B to access on its behalf.
The difference between B simply taking care
to always quote A and B receiving a delegation
to B for A is subtle. In both cases, A must ex-
plicitly hand off authority to B. And in both
cases, B has to take some explicit action to ac-
cept the delegation; in the first case, that action
is to quote A, in the second, it must also make a
separate statement accepting the delegation.
Like as, for seems to be introduced for its
special properties, to enable a more efficient pull-
style theorem-proving implementation.
We have completed our review presentation of
the calculus due to Lampson et al.

4 The Simple Public Key In-
frastructure

The Simple Public Key Infrastructure 2.0 (SPKI,
pronounced “spooky”) is an Internet Experimen-
tal Protocol created by Ellison, Frantz, Lamp-
son, Rivest, Thomas, and Ylonen [EFL+99]. As
its name suggests, it is designed to be a unify-
ing standard for supporting public key autho-
rization across the global Internet. We highlight
here some of the features of SPKI relevant to this
work.

First, SPKI’s primary goal is to provide a
server with evidence that the holder of a given
cryptographic key is ultimately authorized for a
request signed by that key. This goal contrasts
with that of previous public-key infrastructure
development efforts that attempted to bind keys
to identities, and left authorization to be han-
dled in the conventional fashion by ACLs that
map identity to authorization.
In this section, we review the certificate se-
mantics that SPKI supports, and outline the pro-
cedure used to determine whether a given certifi-
cate chain supports a requested operation.

4.1 Certificate semantics

To that end, SPKI defines its own certificate for-
mat, as well as an internal representation of cer-
tificates to which it can map other inputs, such
as PGP certificates, X.509 certificates, or locally
maintained ACL entries. Authorization results
can be constructed from inputs providing infor-
mation in one of three forms:

• 〈authorization, key〉
• 〈authorization, name〉
• 〈name, key〉
The first form coincides with SPKI’s design
philosophy of mapping keys directly to au-
thorizations. Inputs of the latter two forms
must ultimately be combined to form a SPKI
〈authorization, key〉 mapping.

12

Inputs of the first two forms are mapped into
a data structure called a 5-tuple for internal pro-
cessing; inputs of the latter form are mapped into
a data structure called a 4-tuple.
A 5-tuple has the following fields:

• issuer: the public key granting the permis-
sion defined by the 5-tuple

• subject: a public key or name to which the
permission is being granted

• delegation-control: a boolean value indicat-
ing whether this permission may be further
delegated

• authorization: a set of primitive permissions
being granted

• validity dates: a date range limiting the va-
lidity of this delegation

The intended meaning is that the issuer grants
the subject the permission described in the au-
thorization field for the duration of the validity
dates. If the delegation-control bit is set, the
subject may further delegate any or all of the
permission to another subject.
The subjects in 5-tuples (and in 4-tuples,
which we present shortly) may be replaced with
a k-of-n threshold function. In this case, the
permission is delegated to any principal that can
prove it is authorized to speak for any k of the
n “subordinate” subjects listed in the threshold
function.
The authorization fields contain primitive per-
missions whose interpretation is left to the ap-
plication employing the SPKI authorization en-
gine. These permissions are represented using S-
expressions. S-expressions encode infinitely large
sets of primitive statements in a form that per-
mits a compact representation of certain subsets.
To a first approximation, primitives are trees,
and an S-expression represents the subset of
primitives that share a given “trunk” (our term).
An S-expression contains the representation of a
finite tree “trunk,” and any primitive whose tree
is formed of the trunk and some subtrees de-
scending from the trunk’s leaves is a member of

the subset described by the S-expression. No-
tably, an S-expression can represent only a set of
primitive symbols; never a formula made from
the negation or conjunction of primitive sym-
bols. S-expressions admit a simple intersection
algorithm that always yields a compact represen-
tation of the intersected set: the “union” of two
trunks is a new trunk that matches only primi-
tive symbols that matched both input trunks.
SPKI certificates may also indicate an on-line
mechanism for verifying that the issuer consid-
ers a certificate still valid. Two of the checks,
the certificate revocation list (CRL, a nega-
tive list of revoked certificates) and the timed
revalidation (a positive list of still-valid certifi-
cates), are performed by consulting a list revised
more frequently than the original certificate be-
ing checked. The one-time revalidation check is
performed by contacting a named server to verify
that the server still approves the certificate, and
“represents a validity interval of zero” [EFL+99,
p. 21].
Symbolic names are always interpreted rela-
tive to a globally unambiguous name; in SPKI,
such a name always consists of a public key. As
a consequence, the definition of a symbolic name
is never ambiguous; it is always the definition
supplied by the key that grounds the name. The
SPKI authors contrast this situation with that
of PGP, where symbolic names reside in a global
namespace, and their meaning depends on the
beholder and the “introducers” that the beholder
trusts.
A symbolic name ultimately is defined as one
or more keys, although a single 4-tuple may de-
fine a name in terms of a chain of other names
grounded in a key. In that case, other 4-tuples
must participate in the reduction of the name
chain to a final key. A 4-tuple has the following
fields:

• issuer: the public key defining this name in
its private name space.

• name: the name being defined

• subject: a public key or name to which the
name is bound.

13

• validity dates: a date range limiting the va-
lidity of this delegation

When the subject is a key, a 4-tuple binds a sym-
bolic name to a key; when the subject is itself
a name (always globally qualified), the 4-tuple
binds a symbolic name to another name. In the
latter case, the subject name must ultimately re-
solve to some key to be used in an authorization
decision.
The intended meaning of a 4-tuple is that the
issuer defines the symbolic name, when grounded
by the issuer’s key, to be equal to the key iden-
tified by the subject for the duration of the va-
lidity dates. It is easy to read this definition
backwards. Note that a name definition tuple
does not give the issuer control over the sub-
ject, but the subject control over any permission
elsewhere granted to the grounded name “issuer:
name.” Hence a threshold subject is also mean-
ingful as the subject of a 4-tuple; its use means
that if a principal speaks for k of the n subordi-
nate subjects, that principal also speaks for “is-
suer: name,” and hence garners any permission
granted to that name.

4.2 Tuple reduction

The SPKI access-control decision procedure is
called “tuple reduction.” Once the appropriate
certificates for an access-control decision have
been gathered and the on-line checks performed,
and the certificates converted into internal tu-
ples, the tuples are “reduced.” If the reduction
results in a 5-tuple granting the requested per-
mission to the key that signed the request, then
the request may be granted.
Reduction proceeds as follows. First, 4-tuples
are reduced to resolve names. 4-tuples that de-
fine a name in terms of another grounded chain
of names are reduced using 4-tuples that define
a name in terms of a key. Eventually, 4-tuples
of the former form are reduced to 4-tuples of the
latter form. The validity date stored in the out-
come of each reduction is the intersection of the
validity dates of the 4-tuples being reduced.
Then the 〈name, key〉 bindings formed by the
reduced 4-tuples are applied to resolve names

in 5-tuples back to keys, again carrying validity
dates through with intersection operations. This
operation turns 〈authorization, name〉 5-tuples
into 〈authorization, key〉 tuples.
At this point, each 5-tuple represents a sub-
ject key (or threshold subject defined as a set of
keys) with authorization to perform some set of
actions on behalf of the issuer key. When two
5-tuples form a chain of delegation (the issuer of
the second is the subject of the first, and the first
tuple allows further delegation), the 5-tuples are
reduced to a new tuple whose subject is the sub-
ject of the second tuple and whose issuer is the
issuer of the first. The reduced tuple carries the
intersection of the authorizations of the source
tuples as its authorization, and the intersection
of the validity dates of the source tuples as its
validity dates. Finally, the reduced tuple carries
the same delegation control bit as the second tu-
ple did. Think of the delegation control bit as
the coupling on the back of a boxcar; if the first
tuple lacks it, the cars cannot couple; if the sec-
ond tuple lacks it, the cars may couple, but the
resulting “super-car” will also lack a rear cou-
pling.
We return to SPKI in Section 7, where we ap-
ply our extended calculus to model SPKI.

5 The logic and semantics of re-

stricted delegation

Having presented modal logic and the access
control logic of Lampson et al. in Sections 2
and 3, we are ready to extend the logic. Fig-
ure 4 summarizes the symbols we use in the fol-
lowing sections. In Section 5.1, we extend the
speaks-for relation with an argument restricting
the delegation to a subset of statements. Then
in Section 6.1, we extend the logic to incorporate
SPKI-style linked local names.

5.1 The
T⇒ extension to the

calculus of access control

In one paper, Lampson et al. mention in pass-
ing the idea of a qualified speaks-for operator
[LABW92, page 272]. In this section, we intro-

14

Set Example
members

Description

Σ s, t The set of primitive
propositions. They
represent resources.

Σ∗ σ, τ
s ∧ t

The set of well-formed
formulas (statements)
constructed from Σ, ∧,
¬, A says, and B ⇒ A

2Σ
∗

S, T, V The set of sets of
statements

P A, B The set of primitive
principals. They
represent agents,
including people,
machines, programs, and
communications
channels.

P ∗ A,B
A ∧B

The set of compound
principals constructed
from P , ∧, |, and ·N

N N The set of local names

Figure 4: The symbols used to represent sets in
this paper.

duce our regarding operator, which formalizes
the notion of the restricted speaks-for operator.
It is written B

T⇒ A, and read “B speaks for A
regarding the set of statements in T.” T is any
subset of Σ∗. The desired meaning is that when
σ ∈ T ,

B
T⇒ A �

�((B saysσ) �

�(A saysσ))

The power of the regarding operator T⇒ is
that A can delegate a subset of its authoritywith-
out modifying any ACLs. Contrast the situation
with the use of roles in Section 3.5, where to del-
egate authority to a restricted subset of her re-
sources, Alice had to define a role and install that
role in the ACLs of each resource to be shared.
Restricted speaks-for is transitive:

� (C T⇒ B) ∧ (B T⇒ A) �

�(C T⇒ A) (Axiom 22)

We expect the ∧ operation on principals to be
monotonic over T⇒:

� (B T⇒ A) �

�(B ∧ C) T⇒ (A∧ C) (Axiom 23)

Restricted control over two principals is the
same as restricted control over their conjunct:

� C T⇒ (A∧ B) ≡ (C T⇒ A) ∧ (C T⇒ B)
(Axiom 24)

Let U be the universe of all well-formed formu-
las; that is, those formulas over which a model
M defines E . Restricted speaks-for degenerates
to the original speaks-for when the restriction set
is the set of all statements:

� (B U⇒ A) ≡ (B ⇒ A) (Axiom 25)

If Bob speaks for Alice regarding a set of state-
ments T , he surely speaks for her regarding a
subset T ′ ⊆ T :

∀T ′ ⊆ T,

�(B T⇒ A) �

�(B T ′⇒ A) (Axiom 26)

Using Axiom 26, a chain of delegations can be
collapsed to a single delegation from the head
principal in the chain to the tail, whose restric-
tion set allows the intersection of the restriction
sets of each of the original delegations.

� (C S⇒ B) ∧ (B T⇒ A) �

�(C S∩T⇒ A)
(Theorem 27)

This is not to say that C may not speak for A
regarding more statements than those in the in-
tersection; we address this topic further in Sec-
tion 8.
If we have two restricted delegations from Al-
ice to Bob, we might expect Alice to speak for
Bob with respect to the union of the restriction
sets. Because of the semantics we choose for T⇒,
however, this is not the case.

(B S⇒ A) ∧ (B T⇒ A) � �

�B
S∪T⇒ A (Result 28)

In Section 5.1.2, we describe a relation weaker
than T⇒ for which the positive claim holds.

15

Lampson’s quoting operator on principals (|) is
monotonic in both arguments over ⇒. Quoting
is still monotonic over T⇒ in its left argument:

�
(
B T⇒ A

)
�

�C|B T⇒ C|A (Axiom 29)

Our semantics does not justify monotonicity
in the right argument, however:(

B T⇒ A
)
� �

�B|C T⇒ A|C (Result 30)

This result appears to limit the usefulness of
quoting. The same counterexample that shows
Result 30 shows the same property for the weaker
speaks-for relation defined in Section 5.1.2; so it
seems that the notion of quoting simply does not
mix easily with restricted delegation.
We can, however, propagate the quoted prin-
cipal through the restriction set. Let T ∗ be the
closure of T with respect to the propositional op-
erators ¬ and ∧: T ⊆ T ∗, and if σ, τ ∈ T ∗, then
¬σ ∈ T ∗ and σ ∧ τ ∈ T ∗. Furthermore let TC
be the closure of T with respect to the modal
operator C says: T ⊆ TC, and if σ ∈ TC, then
(C saysσ) ∈ TC. Now (T ∗)C is the modal clo-
sure applied to the propositional closure of some
original set T. With these definitions, we can
show:

�
(
B (T ∗)C⇒ A

)
�

�

(
B|C T⇒ A|C

)
(Axiom 31)

When T = U , this axiom reduces to showing
right-monotonicity for the original speaks-for re-
lation. This axiom means thatA’s restricted del-
egation to B must explicitly include any “quotes”
of C that it is willing to believe B about. It
seems awkward, but it is a useful result. Why?
Because any possible-worlds semantics wherein
(B T⇒ A) �

�(B|C ′ T⇒ A|C ′) for all principals C ′
must depend on every other principal relation.
The introduction of malicious principals with
cleverly-chosen relations into such a system can
effectively expand T until T = U .

5.1.1 Semantics of T⇒
The semantic definition of T⇒ is based on the no-
tion of “projecting” a model into a space where

only the statements in set T are relevant. The
idea behind this definition is that if one were to
take the “quotient” of a model M with respect
to the dual of T , the resulting modelM would be
concerned only with statements in T . B ⇒ A in
M should be equivalent to B

T⇒ A in the original
model. The model M is a projection of M that
only preserves information about statements in
T .
To do this, we begin by defining an equiva-
lence relation∼=T :W×W that relates two worlds
whenever they agree on all statements in T :

w ∼=T w′ iff
(∀σ ∈ T, w ∈ E(σ) iff w′ ∈ E(σ))

(Definition 32)

Then we define the mapping φT : W →
W that takes worlds from the original model
to equivalence classes of ∼=T . The equivalence
classes belong to a set W = 2T ; notice that
worlds (equivalence class representatives) in M

cannot be confused with those in M .

φT (w) = φT (w′) iff w ∼=T w′ (Definition 33)

We give a construction of φT (w) in Appendix
Section A.1.
Next we extend φT to the function φw

T : 2
W →

2W that maps a set of worlds Sw ⊆W to a set of
equivalence class representatives in the projected
model:

φw
T (Sw) = {w | ∃w ∈ R, w = φT (w)}

(Definition 34)

We use bar notation (w) to indicate an equiva-
lence class representative (member of a world of
a projected model) as opposed to a member of
W in the original model.
We can now give our first semantic definition
of restricted delegation:

E(B T⇒ A)

=

 W if ∀w0

(
φw

T (R(A)(w0)) ⊆
φw

T (R(B)(w0))

)
∅ otherwise

(Definition 35)

For the justifications of several of the axioms
it is more convenient to shift the projection (φ)

16

operation to one side of the subset relation. To
do so, we define

φ+
T (R) =

{〈w0, w
′
1〉

∣∣ ∃w1
∼=T w′

1, 〈w0, w1〉 ∈ R
}

(Definition 36)

Think of φ+
T as a function that introduces as

many edges as it can to a relation without dis-
turbing its projection under T .
We can use φ+

T to give an equivalent definition

of T⇒:

E(B T⇒ A) =
{

W if R(A) ⊆ φ+
T (R(B))

∅ otherwise
(Definition 37)

The symbolic gymnastics of moving the projec-
tion to the right side of the ⊆ relation is equiva-
lent to the definition in terms of φw

T , but it saves
us work in Section 6. The equivalence is shown
in Appendix A.2.
A casual intuition for this definition is that φT

projects from the full model M down to a model
in which worlds are only distinguished if they dif-
fer with regards to the truth of statements in T .
If we collapse away the accessibility arrows that
do not say anything about what is happening in
T , and A’s relation is a subset of B’s relation
in the projection, then A knows everything B
knows about statements in T . This intuition is
exactly what we want for restricted delegation.
What happens if we take alternative defi-
nitions for restricted delegation? We explore
one tempting but undesirable alternative in
Appendix A.3. Presently, in Sections 5.1.2
and 5.1.3, we explore two intriguing possibilities.

5.1.2 The T→ relation

Abadi mentions a weaker version of the speaks-
for operator, B → A,6 that is true exactly when
B saysσ �

�A saysσ. But A may have some dif-
ferent reason than B to say σ. Semantically, A
may consider a totally different set of worlds pos-
sible; it just happens that σ is still true in those
worlds. For that reason, B → A is a weaker re-
lation than B ⇒ A. The latter requires a special
(subset) relationship to appear in the model.

6Personally, we pronounce it “B weakly speaks for A.”

We can define a semantics for these operators.

E(B → A) ={
w

∣∣∣∣ ∀σ ∈ Σ∗,
R(B)(w) ⊆ E(σ) �

�R(A)(w) ⊆ E(σ)
}

E(B T→ A) ={
w

∣∣∣∣ ∀σ ∈ T,

R(B)(w) ⊆ E(σ) �

�R(A)(w) ⊆ E(σ)
}

These are not particularly exciting definitions;
they simply state just what the axiom says:

(B → A) = (B saysσ �

�A saysσ)

It is obvious that weak restricted speaks-for
degenerates into Abadi’s unrestricted → opera-
tor, since U = Σ∗:

B
U→ A ≡ B → A

5.1.3 The
T
� relation

Having witnessed a weaker relation→, one may
wonder why Abadi et al. preferred a definition of
speaks-for (⇒) that was stronger than it needed
to be. The intuition seems to be that the
stronger semantics captures the fact that A un-
derstands B’s reasons for believing various state-
ments. Our T⇒ is “strong” in the same sense; it
degenerates to ⇒ when T = U .
Our first attempt to build a strong speaks-for
relation, however, ended up too strong. We call
the definition below our “mighty” speaks-for:

E(B T
� A) ={
w

∣∣∣∣∣∀σ, R(A)(w)−
⋂
σ∈T

E(σ) ⊆ R(B)(w)
}

The idea here is that if a subset relationship re-
stricts A to say everything B says, then permit-
ting A’s relation to grow a little permits A to not
say some of the statements B says (those not in
T). The definition above preserves the desired
relationship: if B saysσ, every world B can see
has σ true; because A can only see those worlds

17

and other worlds where σ is true, A saysσ. So
A has no “reasons” (edges to possible worlds) to
not say σ that B does not also have.

The
T
� relation seemed promising because it

degenerated into⇒ when T = U . It appears too
strong, however. For example, if T = {s,¬s},
then ∩T E(s) = ∅, so any B

T
� A would im-

ply B ⇒ A. The semantics are so strong that
many interesting choices of T are not possible.

In fact, we present
T
� here precisely because it

emphasizes the importance of having a satisfying
semantics to lend intuitive meaning to the logic.
We explore this issue further in Section 8.

5.1.4 Relationships between the rela-
tions

Both T⇒ and T
� are strictly stronger than T→:

B
T⇒ A �

�B
T→ A

B
T→ A � �

�B
T⇒ A

B
T
� A �

�B
T→ A

B
T→ A � �

�B
T
� A

The T⇒ relation is certainly not stronger than T
�;

it seems that it should be strictly weaker, but a
corner case that prevents it from being so:

B
T⇒ A � �

�B
T
� A

B
T
� A � �

�B
T⇒ A

We establish each of these relationships in Ap-
pendix A.5, frequently using counterexamples
to demonstrate what makes one relation weaker
than another.
We introduced the weak and mighty speaks-
for relations in the interest of completeness. Like
Lampson et al., we work primarily with the T⇒
version of the relation.

5.1.5 Supplanting controls

Now that we have the restricted speaks-for rela-
tion, we can dispense with the special controls

operator for building ACLs. Recall the spe-
cial principal 1 from Section 3.5.1. Because it
believes only truth, (1 sayss) �

�s for all state-
ments s. (Check it in the semantics!) That is,
we have an implicit principal that controls all
statements.
We can use the identity to replace every state-
ment of the form A controls s with an equivalent

one: A
{s}⇒w0 1. This statement ensures that

if A sayss, then at the actual world w0 of the
model, 1 sayss. Since the 1 relation only con-
tains edges from a node to itself, this condition
can only be satisfied by selecting an actual world
w0 where s is true.
Although this is completely equivalent to the
special controls operator, it is more elegant in
that all access control on s is uniformly encoded
in T⇒ statements. As with ACLs, the ground-
level statements like A

T⇒ 1 must be stored on
the server that implements the operations in T ,
because 1 is not a cryptographic key that can
sign authorization certificates. In contrast to
ACLs, however, A can make further delegations
B

T2⇒ A that share part of A’s permission, even if
A cannot change the ACLs (ground-level state-
ments). This ability to share resources through
an unlimited number of delegations, each with
the ability to restrict the delegated permissions,
was our original motivation for developing this
extension to Lampson’s calculus.

5.1.6 Supplanting roles

Roles as originally defined are attractive, but
they have the significant difficulty that introduc-
ing a new restricted roleR2 involves finding all of
the objects that role should be allowed to touch,
and adding AasR2 to each of those ACLs. When
one of those objects does not allow ACL modi-
fications by A, it is impossible for A to express
the desired new role. The SPKI document gives
a vivid example that shows how ACL manage-
ment can become unwieldy [EFL+99, p. 17].
With the speaks-for-regarding relation, A can
introduce a new role R2 for itself by allowing
A as R2

T2⇒ A. In fact, roles are no longer nec-
essary at all, but the as and for operator, or

18

operators like them, may still be useful for build-
ing tractable implementations.
Roles, as semantically defined by Abadi et al.,
can also have surprising consequences because
they belong to a global “namespace.” Imagine
that both Alice and Bob use the role Ruser in
their ACLs. That means that the same relation
R(Ruser) encodes both the way that A as Ruser

is weaker than A, and the way that B asRuser is
weaker than B.
Let us build a model for a concrete example.
Our model has two worlds, ws and ws, where
s is true and s is false, respectively. Assume
that neither Alice nor Bob begin by believing s:
¬A sayss and ¬B sayss. Our model must have
the relations:

〈w0, ws〉 ∈ R(A)
〈w0, ws〉 ∈ R(B)

(w0 is a placeholder for whichever world is the ac-
tual world.) Now assume Alice’s doppelganger
(A as Ruser) sayss. To model this, we need
R(A as Ruser) = R(A) ◦ R(Ruser) to include
only worlds where s is true. We want to pre-
serve ¬A says s, or else it would be the case
that (A as Ruser) ⇒ A. That means we can-
not change A’s relation; so our only recourse is
to use R(Ruser) to sever the edges leading to ws:

〈ws, ws〉 �∈ R(Ruser)

But because Ruser is also used by Bob, we arrive
at:

ws �∈ (R(B) ◦ R(Ruser))(w0)
ws �∈ R(B as Ruser)(w0)

Since B as Ruser has no edges to the world ws

where s is false, our model supports the state-
ment (B as Ruser) sayss. Using a common role
has caused unexpected crosstalk between one
principal and another.

5.1.7 Statement expiration

Lampson et al. treat expiration times casually in
[LABW92, p. 270]: “Each premise has a lifetime,
and the lifetime of the conclusion, and therefore

of the credentials, is the lifetime of the shortest-
lived premise.” It is likely that a formal treat-
ment of lifetimes would be time-consuming and
unsurprising, but the lifetimes are an unsightly
element glued onto an otherwise elegant logical
framework. Fortunately, the T⇒ relation allows
us to dispense with lifetimes.
Recall from Section 3.3 that the primitive
statements such as s are meant to encode some
operation in a real system. Assume that each s

describes not only an operation, but the effective
time the operation takes place.7 The restriction
set T in a delegation B

T⇒ A can include restric-
tions on the times of the operations under con-
sideration. So now every delegation may remain
“valid” forever. After the last point in time per-
mitted by T , the delegation becomes useless; any
requested operation bears a timestamp prevent-
ing it from belonging to T . Furthermore, restric-
tions on T can be more than expiration times;
one can encode arbitrary temporal restrictions,
such as only allowing a delegation to be valid on
Friday afternoons.

6 Names

Recall from Section 5.1.6 how roles are in a
global “namespace,” and that seems dangerous,
because there can be some crosstalk between ap-
plications of the same role. SPKI names are
promising, but they have the same property:
identical names have different meaning depend-
ing on the “scope” in which they appear. To
model names, we need to extend our logic and
semantics.
We introduce to the logic a new set of primitive

names, N . We also extend principal expressions
to include those of the form P ·N , where P is an
arbitrary principal expression and N ∈ N . P ·N
is read “P ’s N .” Because · only accepts a prin-
cipal as its left argument, there is no ambiguity
in the order of operations; P · N1 · N2 can only
be parenthesized (P ·N1) ·N2.

7Like Lampson et al., we ignore the issue of securely
providing loosely synchronized clocks.

19

6.1 The logic of names

What properties do we want names to have?
Local namespaces. First, a principal should
control the meaning of any names defined rela-
tive to itself:

∀ principals A, names N :

(A says (B T⇒ A ·N)) �

�(B T⇒ A ·N)

We do not take this statement as an axiom for
the same reason that Abadi and Lampson do not
accept the handoff axiom [LABW92, p. 715],
[ABLP93, p. 273]. In particular, our semantics
does not support it. Instead, as with the handoff
axiom, we assume appropriate instances of it are
assumed by the implementation.
Monotonicity. Second, name application
should be monotonic over speaks-for. If Alice
binds her name “barber” to Bob, and Bob binds
his name “butcher” to Charlie, then we want
“Alice’s barber’s butcher” to be bound to Char-
lie.

(B ⇒ A) �

�(B ·N ⇒ A ·N)

Using this rule, we can write the following to
capture the desired intuition:

(B ⇒ A ·Nbarber) �

�

B ·Nbutcher⇒ A ·Nbarber ·Nbutcher

We take as our axiom a version of the rule gen-
eralized to T⇒.

∀ principals A,B, names N,

and sets of statements T :

(B T⇒ A) �

�(B ·N T⇒ A ·N) (Axiom 38)

Distributivity. We combine the following
pair of results

(A∧ B) ·N ⇒ (A ·N) ∧ (B ·N) (Theorem 39)
(A ·N) ∧ (B ·N)⇒ (A∧ B) ·N (Axiom 40)

to show that names distribute over principal con-
junction:

(A∧ B) ·N = (A ·N) ∧ (B ·N) (Theorem 41)

Here is a motivating example: If Alice has two
doctors Ed (E) and Fred (F), and Bob visits
doctors Fred and George (G), then who is “(Alice
and Bob)’s doctor?” Fred is the only person who
serves as both people’s doctor.
No quoting axiom. The principal (A|B) ·N
can be written, but we have yet to find a mean-
ingful intuitive interpretation for it. (A|B) · N
bears no obvious relation to (A ·N)|(B ·N), for
example. We allow the principal in our logic, but
we have no axioms for extracting quoting from
inside a name application.
Nonidempotence. Finally, application of
names should not be always idempotent. Un-
less some other speaks-for statement causes it,
there is no reason that “Bob’s barber’s barber”
should speak for “Bob’s barber.” We first at-
tempted to model name application (·) with the
quoting operator (|), because quoting satisfies
Axiom 38, which led us to consider using roles to
model names. Roles are also idempotent, how-
ever, which is undesirable. Surely the principal
“Alice’s barber’s barber” will not always be the
same as “Alice’s barber.”
It may be the case, though, that the applica-
tion of a name can become idempotent. Take the
example in Figure 5. In this example, let the
symbol N stand for the name “barber.” The up-
per solid left arrow represents an explicit state-
ment made by Alice: A saysB ⇒ (A·N); that is,
Bob may serve as Alice’s barber, and do anything
“Alice’s barber” is allowed to do. Similarly, the
other solid left arrow represents Bob delegating
Charlie as his barber. It turns out Charlie and
Bob work in the same barber shop and cut each
other’s hair. The swooping solid arrow on the
right represents Charlie delegating the responsi-
bility of “Charlie’s barber” to Bob. So A ·N is
“Alice’s barber,” and is controlled by her barber
Bob. A ·N ·N is “Alice’s barber’s barber,” and is
controlled by her barber’s barber Charlie. Bob
also has some control over “Alice’s barber’s bar-
ber,” since he is free to change his barber from
Charlie to another.
An interesting thing happens at the next level
of name application. The literal name “Alice’s
barber’s barber’s barber,” who we know as Bob,
is actually equal to “Alice’s barber’s barber.” It

20

A

A ·N B

A ·N ·N B ·N C

A ·N ·N ·N B ·N ·N C ·N

Figure 5: An example that shows when inherited names can become idempotent. Each arrow repre-
sents a speaks-for relationship; the text explains each arrow in more detail.

is not that Bob becomes equal to Charlie, but
that ·N has become idempotent. In our case,
both Charlie and Bob have control over A ·N ·N ,
so any further application of ·N introduces no
new restrictions on the resulting principal. The
derived principal is equal to the parent principal.
This conclusion is both intuitive, and valid in the
semantics we present next, but cannot be proven
using the logic.8

6.2 The semantics of names

Wementioned above that names and name appli-
cation cannot be modeled with the roles and the
quoting operator, because quoting a role is al-
ways idempotent. Furthermore, using the same
role for multiple uses of the same name by differ-
ent principals introduces crosstalk as described
in Section 5.1.6.
Instead, we model names as follows. First, we
add a new element to the tuple that defines a
model. A model with naming consists of:

M = 〈W, w0, I, J, K〉
The new interpretation function K : P × N →
2W×W maps a primitive principal A and a name
N to a set of relations R. The idea is that prin-
cipals only define the first level of names in their
namespaces; all other names are consequences of
chained first-level name definitions.

8We accept incompleteness. Abadi mentioned that

the original logic was incomplete. The
T⇒ relation cer-

tainly does not help matters, considering that complete-
ness would involve introducing finite-set mathematics to
the logic.

Next we extend R to define the relations for
principals formed through name application. We
want to define R(A·N) as the intersection of sev-
eral other sets, each requirement ensuring a de-
sired property. Our definition, however, would
end up circular (at requirement II) if it were ex-
pressed in terms of set intersection. Instead, we
define R(A · N) as the largest relation (subset
of 2W×W) satisfying all of the following require-
ments:

R(A ·N) ⊆φ+
T (R(B ·N)) (I)
(∀B, T : R(A) ⊆ φ+

T (R(B)))
R(A ·N) ⊆K(A, N) (II)

(when A ∈ P)
R(A ·N) ⊆R(B ·N) ∪R(C ·N) (III)

(when A = B ∧ C)
(Definition 42)

Requirement I supports Axiom 38. Requirement
II applies only to primitive principals, and allows
each primitive principal to introduce definitions
for first-level names in that principal’s names-
pace. A system implementing instances of the
handoff rule would do so by modifying K(A, N).
Requirement III only applies to principal expres-
sions that are conjunctions, and justifies Theo-
rem 41. There is no question some such largest
relation exists; since each requirement is a subset
relation, at least the empty set satisfies all four.

21

6.2.1 Abadi’s semantics for linked local
namespaces

Abadi gives an alternate logic and semantics for
SPKI-style linked local namespaces [Aba98]. (He
refers to SDSI, from which SPKI 2.0 derives.)
Ours differs in three interesting ways.
First, SPKI has special global names, so that
if NG is a global name, A · NG = NG. The re-
sult is that the same syntactic construct can be
used to bind a local name to another local name
or to a globally-specified name. All names in
linking statements are implicitly prefixed by the
name of the speaking principal; but if the explic-
itly mentioned name is global, the prefix has no
consequence. We consider this syntactic sugar,
and leave it to an implementation to determine
from explicit cues (such as a key specification or
a SDSI name that ends in !!) whether a men-
tioned principal should be interpreted as local to
the speaker.
Second, Abadi’s logic adopts the handoff rule
for names, which he calls the “Linking” axiom
Here it is, translated to our terminology:

A says (B ⇒ (A ·N)) �

�(B ⇒ (A ·N))
He validates the axiom by the use of composition
to model name application, with which we also
disagree.
Abadi’s semantics maps each unqualified name
to a single relation, and models name applica-
tion as quoting (composition). The single re-
lation modeling a name can introduce crosstalk
between otherwise unconnected principals. Re-
call the example from Section 5.1.6. Even when
a name relation is not constrained to be a role,
the same problem arises. For example, let N

represent the name “doctor.” Imagine that Bob
assigns Charlie to be his doctor: C ⇒ B|N This
is fine; Charlie should be able to do some things
on Bob’s behalf (if B|N T⇒, Charlie can do the
things in T), but not everything. Enter Alice,
who is not only omniscient (A = 1), but serves
as her own doctor (A ⇒ A|N). The model re-
quires that R(1) ◦ R(N) ⊆ R(1). At worst,
R(N) = R(identity), causing B|N = B, en-
abling Charlie’s doctor to make investment de-
cisions on Charlie’s behalf. At best, R(N) ⊂

R(identity), and B|N begins spouting off ran-
dom statements, some of which may be in T ,
making Bob believe random statements.
Our semantics escapes this fate by assigning
to each use of a name its own relation, then
ensuring the correct subset relationships remain
among those relations. We must admit that our
semantics for names is at best opaque. Using an
existential definition like “largest set satisfying
the requirements” is not illuminating. We feel it
is better than the alternative, though.

7 Modeling SPKI

Lampson’s original calculus for access control is
useful because its principals are general enough
to model several parts of a computing system,
from users to trusted servers to communications
channels. Our addition of the ability to re-
strict authority with any delegation provides the
needed extra power to make the calculus use-
ful across administrative domains. Perhaps the
most convincing evidence of this power is how
well our extended calculus can model SPKI, an
access-control system designed to span adminis-
trative domains.
Recall that the Simple Public Key Infrastruc-
ture (SPKI), which we reviewed in Section 4,
principally provides access control, rather than
identity authentication. In that sense, it shows
its Lampson heritage. To formally model SPKI
with our extension to Lampson’s original calcu-
lus, we first give a construction that models the
delegation-control bit.

7.1 Delegation control

The SPKI document gives the motivation for in-
cluding a delegation-control bit in SPKI certifi-
cates. We disagree with the argument and fall in
favor of no delegation control, and for the same
reasons as described in the document: delega-
tion control is futile, and its use tempts users
to divulge their keys or install signing oracles to
subvert the restriction. Such subversion not only
nullifies delegation control, but forfeits the ben-
efits of auditability provided by requiring proofs
of authorization. In spite of our opinion, we

22

present an construction that models delegation
control.
To model the delegation-control feature we
wish to split the saysmodality into two separate
modalities: “utterance,” which represents a prin-
cipal actually making a statement, and is never
automatically inherited by other principals, and
“belief,” which is inherited transitively just as
says is. Not only is introducing a new logical
modality clumsy, but it would require us to sup-
port a questionable axiom, undermining the sim-
plicity of the semantics.
Instead, we resort to an equivalent construct:
we split each “real” principalA we wish to model
into subprincipals Au and Ab. Au shall say
only the things that A utters (statements that
are actually signed by A’s key; recall that all
certificate-issuing principals in SPKI are keys),
and Ab shall say all of the things that A be-
lieves. A may inherit its beliefs from other prin-
cipals (because she has delegated to other sub-
jects the authority to speak on her behalf), and
furthermore A should believe anything she ut-
ters. This last condition replaces the clumsy ax-
iom we wished to avoid; instead we enforce it by
simply assuming the following statement for all
principals A and statements s:

� Au sayss �

�Ab sayss (Assumption 43)

Certificates issued by A are statements uttered
by A asserting things that A believes, so we
model them as statements about Ab said by Au.
The desirable outcome is that no principal can
delegate authority to make herself utter some-
thing (make Au say something); she may only
utter the statement directly (by signing it with
her key).

7.2 Restriction

Recall that a SPKI 5-tuple includes five fields:
issuer, subject, delegation-control bit, authoriza-
tion, and validity dates. Let I and S represent
the issuer and subject principals. Let TA repre-
sent the set of primitive permissions represented
by the authorization S-expression, and TV the
set of primitive permissions limited by the valid-
ity dates (assuming the effective-time encoding

of Section 5.1.7). The 5-tuple can be represented
this way if its delegation-control bit is set:

Iu saysSb
TA∩TV⇒ Ib

or this way if not:

Iu saysSu
TA∩TV⇒ Ib

A 4-tuple has a name field (N) and no autho-
rization field or delegation-control bit. It would
be encoded:

Iu saysSb
TV⇒ Ib ·N

It seems natural that a delegation bit is mean-
ingless for a name binding (in SPKI, a name prin-
cipal can never utter a statement directly, only a
key principal can). We find it curious, however,
that SPKI name-binding certificates omit the au-
thorization field. Why not allow a principal to
say the following?

Iu says (S1b ⇒ Ib ·Nbarber)

Iu says (S2b
{shampoo}⇒ Ib ·Nbarber)

In SPKI, such a refinement would require the
user represented by Iu to create a subsidiary key,
bind it to Ib · Nbarber, and then make the re-
stricted authorizations to the subsidiary key.

7.3 Linked local namespaces

The subject principals in the keys above may be
either keys (each directly represented by a prim-
itive principal) or a string of names grounded
in a key. Hence namespaces are “local” in that
names are meaningless except relative to a glob-
ally unambiguous key; namespaces are “linked”
in that the naming operation may be repeated:
If K1 ·N1 resolves to K2, then K1 ·N1 ·N2 is the
same as K2 ·N2, perhaps defined as some K3.
We gave a logic and semantics for linked local
namespaces in Section 6. We model the SPKI
name subject “george: (name fred sam)” with
the principal expression Kgeorge ·N“fred” ·N“sam”.
Substituting the principal expression for Sb, a
4-tuple takes on the general appearance:

Iu says ((KS ·N1 · · ·Nk)
TV⇒ Ib ·N0)

23

7.4 Threshold subjects

A threshold subject is a group of n principals
who are authorized by a certificate only when k
of the principals agree to the requested action.
Such certificates are really just an abbreviation
for a combinatorially long list (nk) of conjunction
statements. For example, a certificate with a 2-
of-3 threshold subject naming principals P1, P2,
and P3 and an issuer A can be represented as:

P1 ∧ P2 ⇒ A

P1 ∧ P3 ⇒ A

P2 ∧ P3 ⇒ A

Hence the logic easily captures threshold sub-
jects, although any tractable implementation
would obviously need to work with them in their
unexpanded form.

7.5 S-expressions

S-expressions, as used in authorization fields in
SPKI, merely represent sets of primitive state-
ments. Therefore, we simply model them using
mathematical sets. We use the fact that neither
S-expressions nor validity date fields can repre-
sent a set containing a negated primitive state-
ment in our analysis in Section 8.

7.6 Tuple reduction

The SPKI access-control decision procedure is
called “tuple reduction.” A request is granted if
it can be shown that a collection of certificates
reduce to authorize the request. The reduced
tuple’s subject must be the same key that is re-
sponsible for the request, the tuple’s issuer must
represent the server providing the requested ser-
vice, and the specific request must belong to the
authorization field of the reduced tuple.
It is clear that tuple reduction is sound with
respect to our extended logic. When 5- and 4-
tuples are encoded in the logic as shown in Sec-
tions 7.2 and 7.3, tuple-reduction simply con-
structs a proof from several applications of The-
orem 27.
SPKI’s decision procedure is not complete
with respect to the logic, because many state-
ments in the logic simply cannot be expressed as

a SPKI certificate. For example, the issuer of a
SPKI certificate cannot be a conjunct principal,
and quoting principals are not used anywhere in
SPKI.

7.7 Validity conditions

An optional validity condition, such as a certifi-
cate revocation list, a timed revalidation list, or a
one-time validation, can be encoded in the logic
using a conjunction. For example, a certificate
requiring a timed revalidation would be inter-
preted

A says (B ∧ (R|H1))⇒ A

to mean that principal R must verify that this
certificate (with hash H1) is valid. Principal R
signs a revalidation instrument I with a short
validity interval TV

R says I
TV⇒ R

and a given revalidation instrument would agree
with all valid outstanding certificates:

I says 0⇒ I |H1

I says 0⇒ I |H2

...

The principal 0 has relation R(0) = ∅, so that
every principal speaks for 0. Using the logic, we
can reason that

0⇒ I |H1⇒ R|H1

and since B ∧ 0 = B, B ⇒ A. Notice the treat-
ment of a hash as a principal. In the logic, prin-
cipals are general entities and can be used to
represent many objects and actors.
Negative lists (CRLs) can be handled simi-
larly; an implementation examining a revocation
list would conclude I says0 ⇒ I |H1 for any H1

not present in the list.
One-time revalidations are meant to be inter-
preted as having a zero validity interval. A sys-
tem verifying a request s creates a nonce E, un-
derstanding E says s, and sends it to the reval-
idator R. R replies with a statement meant to

24

be interpreted

R saysE
{s}⇒ R|H1

Now both B1 and E
{s}⇒ R|H1 say s, so A sayss.

Any future request of the same sort will require
another revalidation, for its swill have a different
effective time.

7.8 What is not in SPKI

Conjunct principals (A ∧ B) are not first-class
entities in SPKI, although they can appear as
threshold subjects. One consequence is that
SPKI does not have a rule that exploits Theo-
rem 41.
Quoting principals are also missing from
SPKI; Lampson’s paper gives nice examples
showing how quoting can help a multiplexed host
or communications channel differentiate when it
is working on behalf of one client rather than an-
other [LABW92, Sections 4.3, 6.1, 6.2, and 7.1].
Without quoting, such a host has permission to
make statements for either client, so it must
perform an access-control check in advance of
relaying a client’s statement. The situation is
analogous to a root POP server that duplicates
the permissions checks of the kernel rather than
changing its UID and letting the kernel verify
the permissions on the system call itself. Quot-
ing lets the multiplexed host defer the complete
access-control decision to the final server verify-
ing the proof. The result is a smaller trusted
computing base and improved auditability.

8 Consequences of Restriction

When C
T⇒ B and B

V⇒ A, we conclude C
T∩V⇒

A; this natural idea of transitive restriction ap-
pears in SPKI’s access control decision procedure
as well. When B

T⇒ A and B
V⇒ A, though, we

conclude B
T∪V⇒ A. This conclusion is certainly

true for T∪V⇒ in SPKI, for if B makes a statement
s ∈ T∪V , one certificate or the other allowsB to
prove that it is authorized on s. SPKI, however,
has no notion of representing the union of re-
striction sets; Certificate Result Certificates can

be used to summarize the proof of intersected
restrictions, but not of unioned ones. This lim-
itation is because SPKI’s representation of re-
striction sets (each an implicit intersection of an
S-expressions and a validity date range) lends it-
self to intersection operations but not to unions.
The consequences of such extension operations
are worth considering. For example,

(B {σ,τ}→ A) �

�(B {σ∧τ}→ A) (Axiom 44)

means that a principal believed on a set of state-
ments is also believed on their conjuncts. This
conclusion seems fairly natural, but it is interest-
ing to note that a restriction set actually permits
more statements than it represents explicitly.
If we employ our projected version of Abadi’s
speaks-for semantics, not only does

(B {σ,τ}⇒ A) �

�(B {σ∧τ}⇒ A) (Axiom 45)

hold, but also:

(B {σ}⇒ A) �

�(B {¬σ}⇒ A) (Axiom 46)

This result implies that given authority on a set
of primitive statements, a principal also has au-
thority on any propositional formula constructed
from those statements. It is surprising, for even

if only B
{s}⇒ A is explicitly granted, B can also

cause A to say the negation of s.
Perhaps scarier still is that

B
{σ}⇒ A �

�B
{σ,¬σ}⇒ A

�

�B
{σ,¬σ}→ A

�

�(B says false) �

�(A says false)

The conclusion is the definition of Abadi’s #→
relation:

“Intuitively, A #→ B means that there
is something that A can do (say false)
that yields an arbitrarily strong state-
ment by B (in fact, false). Thus, A #→
B means that A is at least as powerful
as B in practice.”

25

With these semantics, one might fear that
no restriction is actually meaningful. How
might we escape it? One option is to
abandon the K axiom (Abelievess ∧
Abelieves (s �

�t) �

�Abelieves t), so that
principals no longer believe every consequence
of their beliefs. This option seems undesirable
because it cripples the logic to only operate
outside the scope of belief operators.
A second option is to both disallow negative
statements in restriction sets and to use the
weaker B

T→ A relation instead of B
T⇒ A to

model delegation.
A third option is to prevent principals from
making contradictory statements. This is dif-
ficult in general in a distributed system. One
approach is to prevent principals from making
negative statements (by ignoring any such state-
ments).
A conclusion is that in certain dimensions,
SPKI is as strong as it can be. Changing
SPKI by allowing principals to make nega-
tive statements or by allowing negative state-
ments in restriction sets would push SPKI “over
the edge,” making its restrictions meaningless.
Those proposing to augment SPKI or other sys-
tems based on a logic such as that presented here
must be wary of this hazard.

9 Snowflake and the
T⇒ relation

We are building a prototype distributed system
called Snowflake to learn about how to span ad-
ministrative domains. In Snowflake, we are using
the extended calculus to represent authorizations
across administrative domains.
While the extended calculus can model SPKI,
it can also model more general systems. Specifi-
cally, SPKI is restricted in that every authoriza-
tion delegation must occur between two crypto-
graphic keys. Cryptography can be expensive,
however, and within a trusted computing base,
it is unnecessary. In Snowflake, communications
between “kernels” (in our prototype, Java virtual
machines) use cryptographic certificates equiva-
lent to SPKI certificates. Within a kernel, how-
ever, there may be many principals to repre-

sent, and no reason to pay the computational
price to represent them with cryptographic keys.
Similarly, the delegations among those principals
need not be represented with signed certificates.
By leaning on the broader calculus, we can build
a kernel with faster but equally sound internal
access control that resorts to cryptography for
“long-haul” communication.

10 Related Work

Neuman’s proxies are tokens that confer a re-
stricted subset of a principal’s rights upon some
other principal [Neu93]. Such restricted proxies
can be represented as statements of the form
A saysB T⇒ A, with T the set of restrictions.
One goal of his system is to allow authorization
decisions and accounting to be performed by a
remote server. He describes how proxies can be
used by object servers to delegate authorization
responsibility to a third party. He also describes
a scheme for accounting wherein proxies repre-
sent checks, endorsements, and certified checks.
The check proxies allow object servers to trans-
fer currency from the client to account for ser-
vices rendered. Regarding Lampson’s calculus,
Neuman observes that “the creation of a new
role is cumbersome when delegating on the fly
or when granting access to individual objects”
(page 288). Our work is motivated by the same
sentiment, but we remove that hindrance while
retaining the formal nature of Lampson’s frame-
work.
The PolicyMaker system of Blaze et al. is a
framework for services that rely on cryptography
[BFL96]. PolicyMaker assertions associate an
authority structure (a set of public keys, which
we would represent as principals) with a filter
that defines the actions the principals are al-
lowed to perform (analogous to the restriction
sets of the T⇒ relation). Such assertions are either
“policies” or “certificates.” The object server
originates the former, and trusts them uncondi-
tionally. Certificates originate beyond the object
server, and each is signed by its source, to estab-
lish its validity. Filters are general programs run
in a resource-bounded safe language. They have

26

access not only to the request, but to the “envi-
ronment:” the current time, the name of the ap-
plication, and the chain of keys and certificates
that is being evaluated. We consider the enti-
ties in PolicyMaker to be unnecessarily specific.
Lampson’s calculus gives us a fundamental un-
derstanding of trust relationships separate from
implementation choices such as cryptography.
Massacci’s work on role-based access control
defines a semantics for an access-control logic
very similar to that of Lampson et al. [Mas97].
It has semantic limitations that allow the use of
decisions based on tableau methods. His appli-
cation of tableau methods either provide proof
of authentication or a counter model that shows
that no proof exists.
Bertino et al. offer a model for temporal ac-
cess control, from expiration times to periodic
authorizations such as allowing access on Tues-
days [BBFS96]. Their model allows statements
premised upon the negation of other statements,
and so requires global knowledge of the system
to make decisions. This precludes its use in dis-
tributed systems, particularly those that span
administrative domains.
Gray and Syverson provide a logic for rea-
soning about security in systems that require
mandatory access control [GS98]. They are con-
cerned with verifying that a system meets the
definition of “probabilistic noninterference:” a
principal only knows what it is permitted to
know. Their logic is focused on the verification
of a single central system being accessed by a set
of adversarial programs at different classification
levels.

11 Summary

We describe an extension to the access-control
calculus of Lampson et al. [LABW92], in which
the new speaks-for-regarding operator T⇒ allows
a principal to share a restricted subset of its au-
thority with another principal. The three main
advantages of this extension are:

1. A principal may delegate a restricted part
of its authority, even when the objects of

concern do not have ACLs writable by the
delegator. Restricted delegation shows its
power when used in chains of delegation,
where each principal may pass on only a
subset of its privileges to the next without
needing to edit ACLs or offer a restricted
signing oracle to do so.

2. The original controls operator for specify-
ing of ACLs is replaced with a collection of
T⇒ expressions in the basic calculus. What
once were called ACLs are now just a par-
ticular case of restricted delegation: the first
delegations in any chain. That means that
any policy that could be encoded before in
ACLs can now be encoded anywhere in a
chain of delegations, making a system much
more flexible and manageable.

3. Time restrictions on statements, such as ex-
piration times, are directly encoded in the
calculus.

The first advantage adds new expressiveness
to the calculus, expressiveness that is critical to
the viability of the calculus as a security model
in a widely distributed system that spans admin-
istrative domains. Because the concept of re-
stricted delegation is supported in a general cal-
culus that models arbitrary kinds of principals,
the security model is as suitable for use both lo-
cally on a single host and between hosts with
no a priori administrative relationship. Systems
without this crucial property preclude users from
communicating due to mechanisms that make
assumptions about the structure of administra-
tive domains. Systems with this property can
still build policies reflecting desired administra-
tive relationships using restricted delegation; it is
just that the mechanism of the system no longer
dictates the structure of those administrative re-
lationships.
We also applied the extended calculus to mod-
eling SPKI and our own distributed system. We
discussed some of the consequences exposed by
our extended logic and its semantics; specifically,
the fact that a logical system can present the il-
lusion of restricted delegation when in fact the
delegation restricts very little or not at all. SPKI

27

narrowly escapes this fate, but related systems or
proposals to extend SPKI should carefully con-
sider this problem.

Acknowledgements

Thanks to John Lamping, who patiently helped
Jon understand logical proof systems and se-
mantic models. Thanks also Doug McIlroy, Jon
Bredin, Valeria de Paiva, Mark Montague and
Larry Gariepy for their discussions, which helped
refine the idea. Thanks to the USENIX organi-
zation for funding our research on this topic.

References

[Aba98] M. Abadi. On SDSI’s linked local name
spaces. Journal of Computer Security,
6(1-2):3–21, 1998.

[ABLP93] M. Abadi, M. Burrows, B. Lampson,
and G. Plotkin. A calculus for access
control in distributed systems. ACM
Transactions on Programming
Languages and Systems, 15(4):706–734,
September 1993.

[BBFS96] Elisa Bertino, Claudio Bettini, Elena
Ferrari, and Pierangela Samarati.
Supporting periodic authorizations and
temporal reasoning in database access
control. In Proceedings of 22nd
International Conference on Very Large
Data Bases, pages 472–483. Morgan
Kaufmann, September 1996.

[BFL96] M. Blaze, J. Feigenbaum, and J. Lacy.
Decentralized trust management. In
Proceedings of the 1996 IEEE
Symposium on Security and Privacy,
pages 164–173, 1996.

[EFL+99] Carl M. Ellison, Bill Frantz, Butler
Lampson, Ron Rivest, Brian M.
Thomas, and Tatu Ylonen. SPKI
certificate theory, October 1999.
Internet RFC 2693.

[FHMV95] Ronald Fagin, Joseph Y. Halpern,
Yoram Moses, and Moshe Y. Vardi.
Reasoning about Knowledge. MIT Press,
1995.

[Gol73] William Goldman. The Princess Bride.
Ballantine, 1973.

[GS98] J. W. Gray III and P. F. Syverson. A
logical approach to multilevel security of
probabilistic systems. Distributed
Computing, 11(2):73–90, 1998.

[HC96] G. E. Hughes and M. J. Cresswell. A
New Introduction to Modal Logic.
Routledge, 1996.

[LABW92] Butler Lampson, Mart́ın Abadi, Michael
Burrows, and Edward Wobber.
Authentication in distributed systems:
theory and practice. ACM Transactions
on Computer Systems, 10(4):265–310,
November 1992.

[Mas97] F. Massacci. Reasoning about security:
a logic and a decision method for
role-based access control. In Proceedings
of the First International Joint
Conference on Qualitative and
Quantitative Practical Reasoning
(ECSQARU-FAPR), pages 421–435,
1997.

[Neu93] B. Clifford Neuman. Proxy-based
authorization and accounting for
distributed systems. In Proceedings of
the 13th International Conference on
Distributed Computing Systems
(ICDCS), pages 283–291, May 1993.

[WABL94] Edward Wobber, Mart́ın Abadi, Michael
Burrows, and Butler Lampson.
Authentication in the Taos operating
system. ACM Transactions on
Computer Systems, 12(1):3–32, February
1994.

A Proofs

A.1 Construction of φT

Definition Definition 33 presupposed the exis-
tence of a projection function φT . We construct
such a function now, and show that it satisfies
the definition. Let W = 2T ; that is, worlds inM
are subsets of T . Define

φT (w) = w ∈W

where (σ ∈ w) ≡ (w ∈ E(σ)) ∀σ ∈ T
(Definition 47)

Necessity. Given φT (w) = w = φT (w′), we
know ∀σ ∈ T, σ ∈ w iff w ∈ E(σ), and likewise,

28

∀σ ∈ T, σ ∈ w iff w′ ∈ E(σ). Therefore ∀s ∈
T, w ∈ E(σ) iff w′ ∈ E(σ), and we conclude
w ∼=T w′.
Sufficiency. From the definition of w ∼=T w′,
we know ∀σ ∈ T, w ∈ E(σ) iff w′ ∈ E(σ). Let
w = {σ ∈ T |w ∈ E(σ)} and w′ = {σ ∈ T |w′ ∈
E(σ)}. From our hypothesis we know that the
conditions on w and w′ are the same, so φT (w) =
w = w′ = φT (w′).
In the following proofs, we generally use a bar
(w) to indicate a member of an equivalence class
constructed as shown here.

A.2 Equivalence of φR
T and φ+

T defini-

tions of
T⇒

We now justify our claim in Section 5.1.1 that
Definition 35 and Definition 37 are equivalent.
Necessity. Assume B T⇒ A holds according
to Definition 35:

∀w′
0

(
φw

T (R(A)(w′
0)) ⊆ φw

T (R(B)(w′
0))

)
For all 〈w0, w1〉,

〈w0, w1〉 ∈ R(A) �

�w1 ∈ R(A)(w0)
�

� w1 ∈ φw
T (R(A)(w0)),
w1 = φT (w1)

�

�w1 ∈ φw
T (R(B)(w0))

(using the assumption)
�

� ∃w′
1
∼=T w1,

〈w0, w
′
1〉 ∈ R(B)(w0)

�

�〈w0, w1〉 ∈ φ+
T (R(B))

Sufficiency. Assume B T⇒ A holds according
to Definition 37:

R(A) ⊆ φ+
T (R(B))

Given w0 and w1 ∈ φw
T (R(A)(w0)), we know

that there is some w1 ∈ R(A)(w0), with
w1 = φT (w1). We rewrite the statement
〈w0, w1〉 ∈ R(A), and invoke the assumption
to get 〈w0, w1〉 ∈ φ+

T (R(B)). Now we know
there exists 〈w0, w

′
1〉 ∈ R(B) with w′

1
∼=T w1.

Changing notation again, w′
1 ∈ R(B)(w0). Since

w′
1
∼=T w1, we know w1 = φT (w′

1), and we may
conclude w1 ∈ φw

T (R(B)(w0)).
Together, the two implications show the equiv-
alence.

A.3 An undesirable semantics for
T⇒

Notice that φ+
T projects only the destination

world of each edge in a relation. Why do we
not project both ends of the relation? Such a
definition actually does not preserve our most
basic intuition, that B

T⇒ A �

�B
T→ A. In

the model in Figure 6, the dotted ovals depict
the equivalence classes under T ; projecting both
ends of the edges in R(A) gives {〈T, ∅〉}, as does
R(B). From world w0, however, B sayss but
not A sayss.
Given a relation 〈w0, w1〉, then, the reason
we only project w1 is this: w0 is affected by
what statements are true at w1; substituting
other worlds equivalent with respect to T does
no harm. Substituting other worlds for w0, on
the other hand, changes what statements we con-
sider true at w0.

T

t

s
t

s
t

B A

B

s
t

s

Figure 6: In this example, T = {s}. Notice that
B � T→ A.

A.4 Proof of soundness

In this section, we show that our extension to
Lampson’s calculus is still a sound axiomatiza-
tion of the presented semantics. Like Lampson’s
original logic, ours is based on a conventional
Kripke semantics of modal logic. The conven-
tional proofs of soundness for Axiom 1, Rule 2,

29

Axiom 3, and Rule 4 apply. Our extensions de-
fine E for a new formula (B T⇒ A) and R for a
new principal (A·N), but do not perturb Abadi’s
original semantics for the calculus for access con-
trol. Because those semantics do not depend on
any particular structure in E or R, the axioms of
the calculus remain sound in our extended cal-
culus.
Our present task is to show that the axioms of
our extensions are sound.
Axiom 22. This axiom follows easily from
Definition 35. For all w0,

φw
T (R(A)(w0)) ⊆ φw

T (R(B)(w0))
⊆ φw

T (R(C)(w0)) 2

The following lemma shows that φ+
T preserves

the union operation. Let R1 and R2 be relations.

〈w0, w1〉 ∈ φ+
T (R1 ∪ R2)

≡ ∃w′
1
∼=T w1, 〈w0, w

′
1〉 ∈ R1 ∪ R2

≡ ∃w′
1
∼=T w1,

〈w0, w
′
1〉 ∈ R1 ∨ 〈w0, w

′
1〉 ∈ R2

≡ ∃ w′
1
∼=T w1, 〈w0, w

′
1〉 ∈ R1

∨ ∃ w′
1
∼=T w1, 〈w0, w

′
1〉 ∈ R2

≡〈w0, w1〉 ∈ φ+
T (R1) ∨ 〈w0, w1〉 ∈ φ+

T (R2)
≡〈w0, w1〉 ∈ φ+

T (R1) ∪ φ+
T (R2)

From this equivalence we conclude

φ+
T (R1 ∪R2) = φ+

T (R1) ∪ φ+
T (R2) (Lemma 48)

Axiom 23. We assume the premise in terms
of Definition 35:

∀w′
0 (φ

w
T (R(A)(w′

0)) ⊆ φw
T (R(B)(w′

0)))

We can readily reason for all w0:

φw
T (R(A∧ C)(w0))
= φw

T ((R(A) ∪R(C))(w0))
= φw

T (R(A)(w0) ∪R(C)(w0))
= φw

T (R(A)(w0)) ∪ φw
T (R(C)(w0))

⊆ φw
T (R(B)) ∪ φw

T (R(C))
= φw

T (R(B)(w0) ∪R(C)(w0))
= φw

T ((R(B) ∪R(C))(w0))
= φw

T (R(B ∧ C)(w0)) 2

Axiom 24. This axiom has a symmetric con-
sequence, so we only show the first conjunct. For
all worlds w0,

φw
T (R(A)(w0)) ⊆ φR

T ((R(A) ∪R(B))(w0))
(Lemma 48)

⊆ φR
T (R(C)(w0)) (premise)

2

We digress to point out that we may dis-
card “identical worlds” from a model without
loss of generality. That is, imagine we have a
model M with two worlds w1 and w2 where
w1 ∈ E(σ) iff w2 ∈ E(σ) for every formula
σ ∈ Σ∗. The extra world w2 appears in every
I(s) that w1 appears in. Any edge in any rela-
tion ending in w1 has a related edge ending in
w2 (〈w, w1〉 ∈ J(A) ≡ 〈w, w2〉 ∈ J(A)); likewise
edges starting at w1 have a related edge start-
ing at w2 in every relation. The same holds for
the relations in the name interpretation function
K(A, N). It is clear that the extension function
R, and hence E , have the same overlap with re-
spect to w1 and w2, so that w1 ∈ E(σ) ≡ w2 ∈
E(σ).
Given this definition, we can build a model
M′ = 〈W ′, w′

0, I
′, J ′, K ′〉 that discards w2:

W ′ =W − {w2}

w′
0 =

{
w1 if w0

w0 otherwise

I ′(s) = I(s)− {w2}
J ′(A) = J(A)− {〈w, w′〉|w = w2 ∨w′ = w2}

K ′(A, N) = K(A, N)
− {〈w, w′〉|w = w2 ∨w′ = w2}

Happily,M′ preserves every consequence ofM:
(M |= σ) ≡ (M′ |= σ). Why? Whenever w0 ∈
E(σ), w′

0 ∈ E ′(σ), either for exactly the same
reasons (when w0 �= w2), or because w0 = w2,
so w0 = w2 ∈ E(σ) ≡ w1 ∈ E(σ), and then
w′

0 ∈ E ′(s) for the same reasons that w1 ∈ E(s).
Convinced that duplicate worlds do not alter
the consequences of a model, we may now assume
that no models contain identical worlds, without
damaging our semantics. If we know w1 �= w2,
we can assume the existence of a formula σ with

30

(w1 ∈ E(σ)) �≡ (w2 ∈ E(σ)), and conclude that
w1 �∼=U w2 (by Definition 32). Therefore, φU is
bijective:

w1 �= w2
�

�φU (w1) �= φU(w2)

By the definition of φ+
T it is obvious that any

relation R ∈ φ+
T (R). But when T = U , the con-

verse is also true:

〈w0, w1〉 ∈ φ+
U (R)

�

�∃ w′
1 such that 〈w0, w

′
1〉 ∈ R,

φU (w′
1) = φU (w1)

�

�w′
1 = w1

�

�〈w0, w1〉 ∈ R

Now we have φ+
U (R) = R.

Axiom 25. Expanding the definition of B U⇒
A and applying the previous result givesR(A) ⊆
φ+
U (R(B)) = R(B), which satisfies the definition
of B ⇒ A. 2
Justifying axiom Axiom 26 requires two lem-
mas that relate representatives of equivalence
classes under different projections.
First, a representative of a projection due to
a small set has a “big brother” in any projec-
tion due to a superset, and the structure of the
brothers is closely related:

w′
1 ∈ φw

T ′(Sw), T ′ ⊆ T
�

�∃w1 ∈ φw
T (Sw), w′

1 = w1 ∩ T ′ (Lemma 49)

Proof. By the first premise, there is a w1 ∈
Sw where w′

1 = φT ′(w1). From Definition 47 we
know

(σ ∈ w′
1) ≡ (w1 ∈ E(σ)) ∀ σ ∈ T ′ (1)

Let w1 = φT (w1); since w1 ∈ Sw, w1 ∈ φw
T (Sw).

Having exhibitedw1, we need only show w1∩T =
w′

1.
We again invoke Definition 47 to get

(σ ∈ w1) ≡ (w1 ∈ E(σ)) ∀ σ ∈ T (2)

First, σ ∈ w1 ∩ T ′ means both σ ∈ T ′, and be-
cause T ′ ⊆ T , σ ∈ T . The latter allows us to
use (2) to write w1 ∈ E(σ), and then we invoke

(1) to get σ ∈ w′
1. Conversely, σ ∈ w′

1 means
σ ∈ T ′ and hence σ ∈ T . We apply (1) to get
w1 ∈ E(σ), and apply (2) to get σ ∈ w1. Now we
have shown w1∩T ′ = w′

1, proving the lemma. 2
The second lemma is approximately the con-
verse of the first:

w1 ∈ φw
T (Sw), w′

1 = w1 ∩ T ′ T ′ ⊆ T
�

�w′
1 ∈ φw

T ′(Sw) (Lemma 50)

Proof. The first premise, by Definition 34, im-
plies the existence of a w1 ∈ R, and Definition
47 lets us write

(σ ∈ w1) ≡ (w1 ∈ E(σ)) ∀ σ ∈ T (1)

For every σ ∈ T ′, all of the following hold:

σ ∈ T (third premise)
(σ ∈ w1) ≡ (w1 ∈ E(σ)) (1)

(σ ∈ w1 ∪ T ′) ≡ (w1 ∈ E(σ))
(σ ∈ w′

1) ≡ (w1 ∈ E(σ)) (second premise)

This last result implies that w′
1 = φT ′(w1), which

is sufficient to prove the conclusion of the lemma.
2

Axiom 26. We take as our hypothesisM |=
B

T⇒ A, that is:

φw
T (R(A)(w0)) ⊆ φw

T (R(B)(w0))

Given any world w0 and sets T ′ ⊆ T , we assume
w′

1 ∈ φw
T ′(R(A)(w0)) and set out to prove w′

1 ∈
φw

T ′(R(B)(w0)). By the assumption and Lemma
49, we know

∃ w1 ∈ φw
T (R(A)(w0)), w′

1 = w1 ∩ T ′

The hypothesis gives w1 ∈ φw
T (R(B)(w0)), which

satisfies the premise for Lemma 50. Hence we
know w′

1 ∈ φw
T ′(R(B)(w0)), and we have proven

that

∀w0, (φw
T ′(R(A)(w0)) ⊆ φw

T ′(R(B)(w0))) 2

Theorem 27. Apply Axiom 26 twice to the
premises to get two relations restricted by S∪T ,
then apply Axiom 22 to collapse them into the
relation in the conclusion. 2

31

t
s
t

s
t

BA

A

t

A
s

s

w0

In this model, A’s rela-
tion at w0 is not a sub-
set of B’s.

Projected under S =
{s}, however, the sub-
set relation holds . . .

. . . as it does under
T = {t}.

Figure 7: A counterexample showing why two delegations for sets S and T do not imply a delegation
for set S ∪ T (Result 28).

Result 28. Figure 7 gives a counterexample
that justifies the result. The diagram in the fig-
ure models B

S⇒ A and B
T⇒ A. The statement

B
S∪T⇒ , however, fails. Projecting the model un-

der S ∪ T gives the original picture, since each
world falls in a separate equivalence class. No-
tice that B says ¬(s ∧ ¬t): that statement is
true in both worlds B considers possible. But A
does not believe it, since A can see the lower-left
world, where the statement is false.
Why should this result be intuitive or desir-
able? Recall from Section 8 that the strength
of T⇒ means that a delegation regarding T may
imply a delegation regarding a larger set T ∗ that
includes formulas constructed from the members
of T . In our example, B speaks for A regarding
formulas composed exclusively with the primi-
tive s or the primitive t, but not regarding for-
mulas combining the two. The closure of the
restriction set S ∪ T includes formulas such as
¬(s ∧ ¬t).
Axiom 29. Assume the premise in terms of
Definition 35:

∀w′
0 (φ

w
T (R(A)(w′

0)) ⊆ φw
T (R(B)(w′

0)))

Let w belong to φw
T (R(C|A)(w0)). The semantics

for quoting gives w ∈ φw
T ((R(C) ◦ R(A))(w0)).

An edge only exists in a composition if we have
w1 and w2 such that 〈w0, w1〉 ∈ R(C) and
〈w1, w2〉 ∈ R(A); Definition 34 guarantees that
we have such w1, w2 with w = φT (w2).
Since w2 ∈ R(A)(w1), we can use the assump-
tion to show the existence of w′

2 ∈ R(B)(w1)

with φT (w′
2) = φT (w2) = w. That means that

w ∈ φw
T (R(B)(w1)), and hence w ∈ φw

T ((R(C) ◦
R(B))(w0)). By the definition of quoting, we ar-
rive at w ∈ φw

T (R(C|B)(w0)), which proves the
conclusion. 2
Result 30. The model in Figure 8 is a coun-
terexample for T = {s} that shows the result.
Notice that B T⇒ A: R(A)’s only edge goes from
w0 to the equivalence class of worlds where s is
true, and R(B) also has such an edge (the loop
at w0). When we compose the relations, how-
ever, we see that B|C says s, but not A|C sayss.
The equivalence classes of {C says s} are differ-
ent than the equivalence classes of {s}.

s
t

s
t

A C

B

t

B
s

C

s
t

0w

Figure 8: A model that demonstrates Result 30.

Axiom 31. Inductively applying Axiom 46
and Axiom 45 shows as a theorem that B

T⇒ A
implies B

T ∗⇒ A. Therefore, we may imme-
diately replace the premise of this axiom with

B
((T ∗)C)∗⇒ A, which follows by the theorem from

the original premise. Herein we omit the paren-

32

theses for the postfix set operators ∗ and C, and
simply write T ∗C∗.
Hence we begin with the hypothesis that

R(A) ⊆ φ+
T ∗C∗(R(B))

We are given some w0 ∈W and the existence of
w2 ∈ φw

T (R(A|C)(w0)). The set can be rewritten
φw

T ((R(A) ◦ R(C))(w0)), so we know that there
exist w1 and w2, where

〈w0, w1〉 ∈ R(A)
〈w1, w2〉 ∈ R(C)

w2 = φT ∗C∗(w2)

The last expression means that for all σ ∈ T ,
σ ∈ w2 if and only if w1 ∈ E(σ).
Define the formula

τ2 =
∧
σ∈T

{
σ if σ ∈ w2

¬σ otherwise

Intuitively, τ2 is true at precisely those worlds
that map to w2 under φT . We have constructed
τ2 such that w2 ∈ E(τ2).
Since 〈w1, w2〉 ∈ R(C), we know R(C) �⊆
E(¬τ2), and therefore w1 �∈ E(C says¬τ2), and
finally w1 ∈ E(¬C says¬τ2). The propositional
closure of T ensures that each conjunct of τ2, and
thus τ2 itself and ¬τ2, appear in T ∗. The modal
closure over “C says” ensures that (C says¬τ2) ∈
T ∗C, and therefore (¬C says¬τ2) ∈ T ∗C∗.
Now we may employ the hypothesis to show
that there exists a w′

1 ∈ R(B)(w0) with
w′

1
∼=T ∗C∗ w1. It follows that:

w′
1 ∈ E(¬C says¬τ2)
=W − E(C says¬τ2)
=W − {w|R(C)(w)⊆ E(¬τ2)}
= {w|R(C)(w) �⊆ E(¬τ2)}
= {w|∃w′

2 ∈ R(C)(w), w′
2 �∈ E(¬τ2)}

= {w|∃w′
2 ∈ R(C)(w), w′

2 ∈ E(τ2)}

That is, we know there is a w′
2 ∈ E(τ2), with

〈w′
1, w

′
2〉 ∈ R(C).

With both 〈w0, w
′
1〉 ∈ R(B) and 〈w′

1, w
′
2〉 ∈

R(C), we have 〈w0, w
′
2〉 ∈ R(B)◦R(C) = R(B|C).

From the definition of τ2, we know that w′
2 is

in E(σ) exactly when σ ∈ w2 for all σ ∈ T ,
so w2 = φT (w′

2). We have shown that w2 ∈
φw

T (R(B|C)(w0)), and therefore that given the

hypothesis, the model supports B|C T⇒ A|C. 2
Axiom 38. This axiom follows from our cur-
rent brute-force semantics for names. Assume
the premise in terms of Definition 37:

R(A) ⊆ φ+
T (R(B))

We want to show that

R(A ·N) ⊆ φ+
T (R(B ·N)),

which is of course trivial thanks to requirement
I of Definition 42.
Theorem 39. Requirement III of Definition
42 exists to support this axiom. It says:

R(A∧ B) ·N ⊆ R(A ·N) ∪R(B ·N)

The right-hand side, by the semantics for ∧, is
equal to R((A · N) ∧ (B · N)), completing the
proof.
Axiom 40. Since (A∧B)⇒ A, (A∧B) ·N ⇒
A ·N (by Axiom 38, with T = U). The same is
true for B, proving:

(A∧ B) ·N ⇒ (A ·N) ∧ (B ·N) 2

Theorem 41. Theorem 39 and Axiom 40 to-
gether show equality. 2
Axiom 44. Assume R(B) ⊆ E(σ′) �

�R(A) ⊆
E(σ′) for σ′ ∈ {σ, τ}. Further, assume that
R(B) ⊆ E(σ ∧ τ). Using the semantics of ∧,
we can write R(B) ⊆ E(σ) ∩ E(τ), and hence
R(B) ⊆ E(σ) and R(B) ⊆ E(τ). By the first as-
sumption, we can replace B in both statements
with A, use the definition of ∩ and the seman-
tics of ∧, and conclude that R(A) ⊆ E(σ ∧ τ),
justifying the axiom. 2
Axiom 45. Let T = {σ, τ} and T ′ = {σ ∧ τ}.
Assume first that:

φw
T (R(A)(w′

0)) ⊆ φw
T (R(B)(w′

0)) ∀w′
0 ∈W

Second, assume we are given w0 and w′
1 such that

w′
1 ∈ φw

T ′(R(A)(w0)). We have the existence of
a w1 ∈ R(A)(w0) with w′

1 = φT ′(w1).

33

Let w1 = φT (w1). By our first assumption,
w1 ∈ φw

T (R(B)(w0)), so there is a w′
1 ∈ R(B)(w0)

with w1 = φT (w′
1). We claim that φT ′(w′

1) = w′
1,

a claim supported by leaning on the definition of
φT :

σ ∧ τ ∈ φT ′(w′
1) ≡ w′

1 ∈ E(σ ∧ τ)
≡ w′

1 ∈ E(σ) ∧w′
1 ∈ E(τ)

≡ σ ∈ w1 ∧ τ ∈ w1

≡ w1 ∈ E(σ) ∧w1 ∈ E(τ)
≡ w1 ∈ E(σ ∧ τ)
≡ σ ∧ τ ∈ w′

1

Since w′
1 is either T = {σ ∧ τ} or ∅, we

have shown the equality, and that w′
1 ∈

φw
T ′(R(B)(w0)). Therefore the model supports

B
{σ∧τ}⇒ A. 2
Axiom 46. The structure of this proof par-
allels that of Axiom 45. Let T = {σ} and
T ′ = {¬σ}. Assume first that:

φw
T (R(A)(w′

0)) ⊆ φw
T (R(B)(w′

0)) ∀w′
0 ∈W

Second, assume we are given w0 and w′
1 such that

w′
1 ∈ φw

T ′(R(A)(w0)). That implies the existence
of a w1 ∈ R(A)(w0), with w′

1 = φT ′(w1). By the
definition of φT ′ we know w1 ∈ E(¬σ) if and
only if ¬σ ∈ w′

1. Using the semantics of ¬, we
can rewrite that expression as

w1 ∈ E(σ) iff ¬σ �∈ w′
1

Define

w1 =
{

T if w′
1 = ∅

∅ otherwise (w′
1 = T ′)

Clearly σ ∈ w1 if and only if ¬σ �∈ w′
1. Now we

can write

w1 ∈ E(σ) iff σ ∈ w1

This expression satisfies the definition of φT , so
we have φT (w1) = w1. Because w1 ∈ R(A)(w0),
we know w1 ∈ φw

T (R(A)(w0)).
Using the first assumption, we have w1 ∈

φw
T (R(B)(w0)). Using arguments analogous to
those above, we have the existence of a w′

1 ∈
R(B)(w0), and by the definition of φT , we can
show that w′

1 is in φw
T (R(B)(w0)) as well. The

model supports B ¬σ⇒ A. 2

A.5 Relationships among the re-
stricted relations

In each of the examples below, assume T = {s}.
T
� is not stronger than T⇒. The subset re-
lation in the projected model M of T⇒ holds with
the possible exception of the single worldwT = T

that represents the equivalence class of worlds in
M in which all statements in T hold. Clearly
φT takes every member of ∩σ∈T E(σ) to that rep-
resentative. The counterexample illustrated in
Figure 9 highlights this exception.

T⇒ is not stronger than
T
�. Although just

showed that
T
� is not quite stronger than T⇒,

it certainly seems almost so. Indeed, it is very
easy to construct an example that shows that the
mighty relation does not follow from the basic
speaks-for-regarding relation. See Figure 10.

T⇒ implies T→. Assume R(A) ⊆ φ+
T (R(B)).

We will prove by contradiction that B
T→ A. To

establish a contradiction, we assume there is a
statement σ ∈ T and a world w0 where B saysσ
but not A saysσ. That is,R(B)(w0) ⊆ E(σ) but
R(A)(w0) �⊆ E(σ). The latter means that there
is a world w1 ∈ R(A)(w0), but w1 �∈ E(σ).
We can push 〈w0, w1〉 through our original as-
sumption to find a w′

1 such that 〈w0, w
′
1〉 ∈ R(B)

and w′
1
∼=T w1. Definition 32 tells us that

w′
1 �∈ E(σ), which means R(B)(w0) �⊆ E(σ),
which contradicts our second assumption. We
may conclude that for all w0 ∈ W and σ ∈ T ,
R(B)(w0) ⊆ E(σ) implies R(A)(w0) ⊆ E(σ). 2

T
� implies T→. We assume

R(A)(w0)−
⋂
τ∈T

E(τ) ⊆ R(B)(w0)

and that R(B)(w0) ⊆ E(σ). From the first as-
sumption, any world w1 ∈ R(A)(w0) is either in
E(σ) (let τ = σ) or in R(B)(w0). The former
case trivially guarantees w1 ∈ E(σ), and the lat-
ter case does so by the second assumption. We
conclude that R(A)(w0) ⊆ E(σ). 2

T→ is weaker than T⇒ and T→ is weaker

than
T
�. See Figure 11 for counterexamples that

illustrate these relationships.

34

A

s
t

s
t

s
t

s
t

Bw

The set ∩s∈T E(s) is the left pair of worlds (where s is
true); the only edge belonging to R(A) terminates
in one of those worlds. Therefore, in this model,
R(A)(w) − ∩s∈T E(s) ⊆ R(B)(w), and we conclude
that B

T
� A.

s

B
A

s

w

The mapping φT that reduces the worlds above to
equivalence classes modulo statements in T will make
this model M′. φR

T (R(A)) includes an edge to the
equivalence class labeled s, but φR

T (R(B)(w)) does
not. Therefore, B � T⇒ A.

Figure 9: A counterexample that shows B
T
� A does not imply B

T⇒ A.

B

s
t

s
t

s
t

s
t

A
w

Here is a model in which from w, A considers possible

a world neither inR(B)(w) nor ∩s∈T E(s). So B � T� A.

A

ss
B

w Projecting the model onto T , however, shows that
φR

T (R(A)) and φR
T (R(B)) completely agree on matters

related to s; that is, B T⇒ A.

Figure 10: A counterexample that shows B
T⇒ A does not imply B

T
� A.

35

s s

B
A

w (a)

The statement (R(B)(w) ⊆ E(s)) �

�(R(A)(w) ⊆
E(s)) has a false premise, making it vacuously true
in this model. Hence this model satisfies B

T→ A.
The model is its own projection onto T , however,
and it is clear that B � T⇒ A.

A

s
t

s
t

s
t

s
t

B
w

(b) This model satisfies B
T→ A for the same reason as

the model in part (a). The single edge terminating
at R(A)(w), however, is in neither R(B)(w) nor
∩s∈T E(s), so B � T� A.

Figure 11: Examples that show why the relation T→ is weaker than T⇒ and
T
�.

36

