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Abstract

Dartmouth’s Greenpass project seeks to provide strong access control to a wireless

network while simultaneously providing flexible guest access; to do so, it augments the Wi-

Fi Alliance’s existing WPA standard, which offers sufficiently strong user authentication

and access control, with authorization based on SPKI certificates. SPKI allows certain local

users todelegatenetwork access to guests by issuing certificates that state, in essence, “he

should get access because I said it’s okay.” The Greenpass RADIUS server described

in Kim’s thesis [55] performs an authorization check based on such statements so that

guests can obtain network access without requiring a busy network administrator to set up

new accounts in a centralized database. To our knowledge, Greenpass is the first working

delegation-based solution to Wi-Fi access control.

My thesis describes the Greenpass client tools, which allow a guest to introduce himself

to a delegator and allow the delegator to issue a new SPKI certificate to the guest. The

guest does not need custom client software to introduce himself or to connect to the Wi-Fi

network. The guest and delegator communicate using a set of Web applications. The guest

obtains a temporary key pair and X.509 certificate if needed, then sends his public key value

to a Web server we provide. The delegator looks up her guest’s public key and runs a Java

applet that lets her verify her guests’ identity using visual hashing and issue a new SPKI

certificate to him. The guest’s new certificate chain is stored as an HTTP cookie to enable

him to “push” it to an authorization server at a later time. I also describe how Greenpass

can be extended to control access to a virtual private network (VPN) and suggest several

interesting future research and development directions that could build on this work.
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Chapter 1

Introduction

1.1 Motivation

Wi-Fi (IEEE 802.11) wireless network access is basically ubiquitous here at Dartmouth

College, and more and more organizations are adopting it in order to enjoy its nearly ef-

fortless connectivity. As this happens, its potential privacy and security pitfalls have moved

into the spotlight, with industry players rushing to provide working security standards.

Standards that simply encrypt Wi-Fi traffic and restrict access to authorized users, how-

ever, are only part of the solution: an organization also needs a flexible way to control just

who is an “authorized user” without negating the many benefits that wireless networks can

provide, such as hassle-free access for legitimate visitors. Dartmouth’sGreenpassproject

seeks to provide strong access control to a Wi-Fi network while simultaneously providing

flexible guest access. This thesis describes one major component of Greenpass, namely its

client tools.

The rapid and widespread adoption of Wi-Fi technology in recent years, despite an

overall slump in the technology market, makes it clear that its hassle-free connectivity is in
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high demand. Universities, businesses, and other organizations who provide wireless LAN

service, however, are justifiably concerned about the privacy and security implications of

“drive-by networking.” The accessibility of a Wi-Fi network’s physical layer makes it

almost trivially easy for an outsider to eavesdrop on unencrypted data in transit on that net-

work or to connect to it without permission. Access to a “tethered” network often depends,

implicitly, on the physical boundaries of that network: it would be easier (i.e., less con-

spicuous) to break into resources on a wired network by walking into a building and using

a machine already on the network than by carrying in a new machine, so security systems

for wired networks often focus on securing who accesses machinesalreadyconnected to

the network. (The NFS distributed filesystem, or subscription-based digital library services

that are restricted to users within a certain IP-address range, are classic examples of such

systems.) Wireless networks reverse this situation by removing nearly all barriers to phys-

ical access, which might explain why the original 802.11 standard defines an encryption

method that attempts to achieve the rather hazy goal of “wired equivalent privacy” (WEP).

Current and future wireless security standards such as WPA [111] and 802.11i, there-

fore, provide cryptography-based solutions to both encryption and user authentication. Au-

thentication can be used to restrict access to a wireless LAN to only known users, which

an organization may wish to do for numerous reasons. The most obvious motivation is

the need to restrict access to sensitive or licensed resources and data available over the

network; an organization may also, however, wish to avoid the extra cost of providing net-

work resources and bandwidth to unauthorized users, to avoid a credibility or liability hit

that might be incurred should an outsider use the network to launch a direct attack, virus,

or spam, and/or to block users who have not installed critical security patches.1 (Even

free community wireless networks projects feel the need to use access control to protect

1Some language in this sentence is derived from a technical report [98] and a conference paper [42] I

co-authored.

2



their networks from abuse; a page on the Personal Telco Web site [96] discusses the risks

involved.)

Although basic, proven authentication and encryption capabilities must form the basis

of a wireless security solution, restricting access is only part of the solution: organizations

must also ask themselves, “towhomshould access be restricted?” The same effortless ac-

cessibility that makes a wireless network attractive to hackers also makes it attractive to

an organization’s legitimate guests who might find it convenient to access the Internet and

other network resources during their visits. Some networks carry extremely sensitive traffic

(e.g., that which is critical to national security) that requires a highly regimented, inflexi-

ble access-control policy; organizations such as universities and enterprises, however, are

under tremendous social pressure to offer at least an Internet gateway to their guests as a

basic amenity. One need only attend a conference, visit a hotel lobby, or enter a wireless

“hotspot” at a cafe to see that this is the case. An article in the May 2003Communications

of the ACM[95] notes this trend and predicts that it will continue to its logical conclusion:

By the fall of 2002, there was a good chance that anytime you walked onto a

university campus2 or into a large office building, its owner would be offering

free Wi-Fi connectivity as a basic amenity (p. 48).

Over the coming years as people experience free Wi-Fi in their homes and

offices, on college campus, at conference centers, and in public parks, they will

inevitably come to expect the same easy and cost-free connectivity everywhere

(p. 51).

Put simply, wireless networks want to be free. By “free,” we mean that homes,

offices, and public spaces will increasingly be expected to provide hassle-free

2My advisor reports that, as he has traveled to various universities, he has found that many, in fact, donot

offer painless guest access. Perhaps they have grown more aware of the security issues involved since 2002.
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wireless bandwidth (p. 49).

Further evidence of pressure in this direction can be found in the recent announcement

by the Pittsburgh airport that it will move from a pay-per-use Wi-Fi access model to free

access.

Traditional access-control methods—including those used in current Wi-Fi standards—

do not adequately accommodate the full potential of wireless networking. To accommo-

date the way peoplewant to (and, knowing people, will) use WLANs, a security solution

must be able to support a rapidly-changing user population whose access privileges may

be ephemeral and must be granted according to real-life, real-time needs. While a central

administrator tool controlled by one or at most a handful of employees may provide an

adequate way to grant permissions to a changing client population at, say, a coffee shop

or other small business, it quickly becomes a bottleneck in any kind of large network that

supports a complex organizational structure.

Dartmouth’sGreenpassproject seeks to remedy this situation by letting authorized

users carry collections of SPKI/SDSIauthorization certificates[29, 31, 32] proving that

they have permission to access a particular wireless network. These credentials also grant

certain users the right todelegatenetwork access permissions to others. Our project has

initially focused on a simple delegator/guest model where certain privileged local users

can delegate temporary access privileges to visitors; hierarchies of SPKI/SDSI certificates,

however, can express a variety of authorization scenarios in order to meet organizations’

diverse needs.

This thesis describes the set of software tools that allow the Greenpass delegation pro-

cess to take place. This process first requires that a guest have or obtain a public key with

which to identify himself (authenticate). A local user who is authorized to delegate network

access permissions must then bind his mental identification of the guest to that public key,
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which serves as his guest’s identity in the digital world. The local user can then sign and

issue a SPKI/SDSI certificate that propagates his own access permission to the guest. By

combining SPKI/SDSI delegation to raw public keys with easy, visual-hash-based meth-

ods of introducing users without a trusted third party, this research allows guests to join a

protected network without a pre-existing agreement between two organizations’ CAs (cer-

tification authorities) or other authentication systems.

1.2 Problem statement

The goal of the Greenpass client tools is to allow a local user who has permission to act as

adelegatorto temporarily allow a guest onto the network by issuing a SPKI certificate that

electronically states, in essence, “I said it’s okay.” In addition, the tools need to meet the

following requirements:

• No pre-existing PKI: since PKI (public-key infrastructure) technology has not been

as widely deployed as its advocates would like, the tools must not rely on a pre-

existing digital agreement between the local organization (the owner of the wireless

network) and the guest’s organization. In particular, we cannot assume the existence

of a “bridge CA” to aid in authenticating the guest: we need to provide a secure way

for the delegator to assert, in essence, “Yes, that’s him (or her).” Note that the goal

of Greenpass is to allow users access to theinsideresources of a Wi-Fi network, not

to restrict them to an Internet gateway only.

• Interoperability with current standards: the tools must be made guest-friendly by us-

ing technologies already installed on platforms we can reasonably expect most visi-

tors to bring. Since our initial focus was a university setting, we had to accommodate

a more diverse range of platforms than an enterprise might.
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1.3 My contribution

My role in the Greenpass project has been, at the highest level, to design and implement

a set of tools that allow a local user (adelegator) to issue a credential that grants a guest

temporary access to the local wireless network. Specifically, the tools and enabling tech-

nologies I have implemented include the following components:

• A set of threeGreenpass Web applicationsthat provide a cross-platform interface to

the other components. A front page Web app provides a rendezvous point and set of

utilities for all users; a guest introduction Web application allows a guest to transmit

his public key value—subsequently used as a unique identifier—to a delegator; and a

delegation Web app allows a delegator to look up a guest’s public key value and send

it to our delegation applet.

• A delegation appletthat allows the delegator to verify that the public key value she

receives really belongs to her intended guest, and generate and sign an authorization

certificate that delegates Wi-Fi access privileges to that guest.

• A number of daemons: adummy CAthat issues new X.509 certificates to guests who

do not have them, anintroduction cachethat stores the public keys of new guests

who are waiting for delegators to authorize them; and anauthorization cachethat

stores newly-created credentials and which Greenpass’s modified RADIUS server

queries to make its final access-control decision granting or denying network access

to a particular user.

The goal of these tools is to demonstrate not only that SPKI/SDSI and similar autho-

rization certificate formats provide a sufficient way to distribute wireless access privileges

among a dynamic client population, but that such a system need not require new authenti-

cation protocols or custom client software.
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1.4 Organization of this thesis

The rest of this thesis is organized as follows:

• Chapter 2 discusses background material related to my work. It explains existing

Wi-Fi authentication mechanisms, focusing on how the widely-used TLS handshake

has been adapted to Wi-Fi authentication; explains the use of and client platform sup-

port for X.509 certificates in TLS; introduces the SPKI/SDSI PKI model and SPKI

authorization certificates; and finally, describes how the Greenpass RADIUS server

described by Kim [55] enables the use of SPKI authorization on a Wi-Fi network.

• Chapter 3 discusses the core of my work: the set of tools that enable a newly-arrived

guest to introduce himself to an authorized local delegator, and the delegator to in turn

issue an authorization certificate granting the guest access to the wireless network.

• Chapter 4 discusses work that is related to my own, including other enhancements

to wireless security (including guest access), other projects using SPKI/SDSI for au-

thorization, alternative certificate and policy formats that compete with SPKI/SDSI,

and work related to secure introductions and visual hashing.

• Chapter 5 suggests future work related to Greenpass, including both project develop-

ment ideas and basic research opportunities.

• Chapter 6 offers a summary of this thesis and some concluding remarks.

• Appendix A describes a recent experiment that enables SPKI-based access control to

a VPN.
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1.5 Style and formatting of this thesis

Throughout this thesis, I use the word “I” to refer to myself when discussing work I have

done mostly unaided. I use the word “we” to refer to myself and others on the Greenpass

project when discussing work that involved a fair amount of collective design or imple-

mentation. I occasionally use “we” to refer to myself and the reader in order to maintain a

perception of discussion, as in “we have previously seen. . . ”. I will make every attempt to

make the latter use obvious from context.

I introduce most new terms by writing them initalics. Where appropriate, I emphasize

terms that refer to components of the client tools I have built by writing them inbold italics.

I sometimes use the termownerof a public key to refer to the entity who holds the

corresponding private key. The wordowneraccurately distinguishes the rightful user of a

key pair from somebody who merely knows its public half, just as the owner of a driver’s

license is different from somebody who might hold it in his hand but does not possess the

corresponding face.

1.6 Related papers

Two other student theses describe work related to Greenpass. Kim’s Master’s thesis [55]

discusses the Greenpass RADIUS tools, which I introduce in Section 2.4, in much greater

detail. Powell’s undergraduate thesis [87] discusses a pilot test of Greenpass with several

users and two different operating systems.

Our research group has also written a number of shorter papers related to Greenpass.

The department technical report by Smith et al. [98] was our first public description of

Greenpass, and Goffee, Kim, Smith et al. [42] is forthcoming in the proceedings of the

3rd Annual PKI R&D Workshop. Baek, Smith, and Kotz [5], also forthcoming, provides

8



a detailed survey of Wi-Fi security technologies. Some language from papers on which I

was a co-author may appear in this thesis. Chapter 3 in particular is adapted and expanded

from earlier work; otherwise, I will try to mention in footnotes when sections of this thesis

contain derivative work.
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Chapter 2

Background

This chapter provides background material related to my work. Section 2.1 provides a

brief history of authentication standards for 802.11 wireless LANs, focusing on how the

widely-used TLS (formerly SSL) handshake has been adapted to Wi-Fi authentication.

Section 2.2 describes the X.509 name certificate standard and expands on how TLS uses

it to authenticate users. Section 2.3 introduces SPKI/SDSI authorization certificates and

explains why they provide a suitable model for expressing permissions for the dynamic

user base of a Wi-Fi network. Finally, Section 2.4 introduces the Greenpass RADIUS

server, which authenticates wireless clients using an unmodified EAP-TLS handshake, but

bases its final access-control decisions on SPKI/SDSI certificate chains.

2.1 Wi-Fi authentication standards

Greenpass augments existing Wi-Fi security protocols rather than introducing its own. The

original Wi-Fi standard provided authentication and privacy via a shared-secret system

calledWEP (Wired Equivalent Privacy). WEP provides no key distribution mechanism,

relying instead on manual entry of keys; furthermore, its authentication and privacy mecha-
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nisms are fundamentally broken. Newer standards such as the Wi-Fi Alliance’sWPA(Wi-Fi

Protected Access) andIEEE 802.11iprovide stronger encryption and multiple authentica-

tion options, including the public-key-based TLS handshake. For a thorough discussion of

Wi-Fi security, the reader should consult Edney and Arbaugh [25].

2.1.1 Preliminary definitions

A few preliminary definitions must be clarified before proceeding with this section:

• Wi-Fi (Wireless Fidelity) is simply an informal name for the IEEE 802.11 wireless

networking standard [20]. It also gives the Wi-Fi Alliance, an industry consortium of

802.11 vendors, its name.

• IEEE 802.11 defines two modes of operation:

– In ad-hoc mode, mobile wireless stations (i.e., client devices) communicate

directly with one other using radio waves, just as nodes of a tethered LAN

communicate directly with one another using electrical signals on a wire.

– In infrastructure mode, on the other hand, a specializedaccess point(AP) pro-

vides central LAN service to one or more mobile client stations in its vicinity.

An AP typically acts as a bridge to a wired network, giving its clients access to

resources on a larger LAN or, via a gateway, a WAN or the Internet.

• A client station mustassociatewith an AP before exchanging data messages with it.

Association does not necessarily allow the client to exchange messages with other

clients or with the wired LAN the AP provides access to: the AP may require a more

complex authentication handshake after a client associates but before it receives full

network access.
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• To associate with an AP, a client station must know theSSIDfor that AP. An SSID is

simply a human-readable “network name” assigned to an AP or group of cooperating

APs to help humans distinguish their service from that of other, nearby Wi-Fi net-

works. An AP may choose to broadcast its SSID or keep it “secret”; not broadcasting

it, however, provides no real protection against unauthorized access.

2.1.2 WEP

A mobile device and an access point using WEP share a secret key which they use to

encrypt and checksum their communications. The shared secret can be any 40-bit string,

but many APs and client tools allow users to type passwords from which 40-bit keys are

derived. (According to Edney and Arbaugh [25], the Wi-Fi Alliance also supports the use

of “128-bit” encryption, which uses a 104-bit key plus a 24-bit initialization vector.)

WEP provides two modes of operation:default key modeandkey-mapping key mode.

In default key mode, all wireless stations use the same key to communicate with the ac-

cess point (meaning they can potentially decrypt and eavesdrop on one another’s traffic).

This mode is sufficient for homes or smaller organizations (or would be if WEP provided

stronger encryption; see below). On the other hand, each client can be assigned its own

key-mapping key. This mode prevents clients from eavesdropping on one another (and pre-

vents a single key compromise from endangering every client’s privacy), but requires every

access point to maintain a table that maps each client’s MAC address to that client’s key.

Unfortunately, WEP has fundamental design flaws that prevent it from providing ade-

quate privacy, authentication, or access control. Borisov, Goldberg, and Wagner [14] dis-

cuss these flaws in detail, as do Edney and Arbaugh [25]. In addition, WEP’s dependence

on shared secrets, without providing any particular method for their distribution, does not

offer the same flexibility as a public-key-based system would.
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2.1.3 WPA

The IEEE 802.11i draft addendum to the 802.11 standard seeks to rectify the problems

with WEP and establish an adequate security standard for Wi-Fi networks. Until 802.11i

moves from a draft to a final, ratified IEEE standard, however, wireless vendors need an

intermediate security standard; to this end, the Wi-Fi Alliance has extracted a subset of

802.11i and published it asWPA(Wi-Fi Protected Access) [111].

WPA strengthens WEP’s encryption and session authentication usingTKIP (temporal

key integrity protocol), which works with existing WEP hardware but cleverly adds session

keys and rotating per-packet keys that are derived from, but different than, the client/AP

master shared key. TKIP also augments WEP with a stronger MIC (message integrity code)

and a longer initialization vector (48 bits). Eventually, the more generalRSN(robust secu-

rity network) standard defined in 802.11i will supersede TKIP, but the initial authentication

and session-key generation procedure, IEEE 802.1x, will remain essentially the same.

2.1.4 IEEE 802.1x

On top of TKIP’s stronger session integrity, WPA adds a general authentication and access

control mechanism calledIEEE 802.1x[21]. IEEE 802.1x applies to more than just wire-

less networks: it defines a general access control mechanism for all LANs in the IEEE 802

(i.e., Ethernet) family. The 802.1x standard identifies three entities, shown in Figure 2.1,

that take part in the authentication process:

• A supplicantrequests access to some network or network resource. In a Wi-Fi envi-

ronment, the mobile client device plays the role of supplicant.

• To request access, the supplicant connects to anauthenticator, a “door guard” that

has the power to grant or deny access to some network service. A Wi-Fi access point
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provides a virtual authenticator for each supplicant that tries to connect to it.

• The authenticator need not store its own database of users and their authentication

credentials; rather, it can relay the supplicant’s handshake messages to anauthentica-

tion server.1 The AP need not understand the entire sequence of authentication mes-

sages: it need only set up the authentication session, relay intermediate messages,

and respond to a “success” or “failure” message sent to it from the authentication

server.

Typically, multiple authenticators rely on a shared authentication server in order to avoid

the maintenance of multiple authentication databases. It is entirely possible, however, for

the authenticator and authentication server to be co-located.

An 802.1x authentication handshake involves three layers, also shown in Figure 2.1:

• The innermost layer consists of the actual authentication handshake that takes place

between the supplicant and the authentication server (supported handshake types are

discussed below). The authenticator need not understand this handshake; it merely

relays messages between the two endpoints.

• The supplicant and authentication server encapsulate their handshake in a packet

format calledEAP (Extensible Authentication Protocol) [13], shown as the middle

layer in Figure 2.1. EAP was originally designed to allow PPP dialup clients to au-

thenticate to a central authentication server so that ISPs would not need to maintain

a duplicate user database at each modem pool. The authenticator must understand

enough of the EAP packet format to know what to do with various EAP packets: it re-

lays most packets, but must understand the EAP packet the supplicant uses to initiate

1The 802.1x standard calls this entity an “authentication” server, but the name is misleading: nothing

stops it from carrying out authorization checks after it authenticates the supplicant. In fact, the Greenpass

authentication server does just that, as we shall see.
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Supplicant RADIUS
serverAP

Inner authentication handshake
(TLS, Kerberos, etc.)

EAP

EAPOL RADIUS

(authenticator) (authentication server)

Figure 2.1: An illustration of IEEE 802.1x authentication. In 802.1x, asupplicantrequests access
to a network or network resource protected by anauthenticator. The authenticator need not store
its own database of users and their authentication credentials; rather, it can relay the supplicant’s
handshake messages to anauthentication server. In a Wi-Fi setting with 802.1x authentication, the
mobile client acts as supplicant, the access point (AP) acts as authenticator, and aRADIUS server
typically acts as the authentication server. At the bottom of the illustration are the layers of com-
munication between supplicant/AP and AP/RADIUS server. The actual authentication handshake
by which the supplicant proves its identity to the RADIUS server (innermost layer) is encapsulated
in EAPpackets, which the AP need understand only well enough to relay them between the other
two entities. The supplicant and AP exchange EAP packets viaEAPOL(EAP-Over-LAN), the the
AP forwards EAP packets to and receives responses from the RADIUS server via the RADIUS
protocol. (Diagram concept courtesy of Kwang-Hyun Baek.)
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communication, as well as the EAP “success” or “failure” packet the authentication

server will eventually use to tell it whether to grant access to the supplicant.

• Finally, the outer layer transports EAP packets between the entities. The supplicant

and authenticator may use a different outer protocol than the authenticator and au-

thentication server do, so long as the inner EAP packets remain intact. The 802.1x

standard defines an EAPOL (EAP over LAN) packet format which the supplicant

and authenticator use to exchange EAP packets over an Ethernet network (such as

802.11). Often, the authenticator and authentication server exchange EAP packets

via the RADIUS(Remote Authentication Dial-In User Service) protocol [89]; au-

thentication servers that use this protocol are calledRADIUS servers.

Several inner authentication methods have been adapted for use with EAP. Among

them are an MD5-based challenge-response protocol, a one-time password protocol, and an

EAP-encapsulated variant of the Kerberos protocol. Of most relevance to our discussion,

however, is EAP-TLS [1]. EAP-TLS defines a way to encapsulate a TLS authentication

and key-exchange handshake—essentially the same as the SSL handshake between a Web

browser and a secure Web server—within EAP. The next section describes TLS authenti-

cation in greater detail.

2.2 Certificate-based authentication: TLS

Public-key cryptography allows two parties to authenticate one another if they have prior

knowledge of one another’s public keys. It also allows entities to learn one another’s public

keys “on the fly” by means ofcertificates, which are essentially signed, distributed directory

entries. This section describes X.509, by far the most common certificate format in use

today; it also describes the TLS (formerly SSL) protocol, a proven method by which two
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parties can authenticate one another using X.509 certificates and establish an encrypted

tunnel around a TCP/IP socket-based connection.

2.2.1 Preliminary definitions

According to Kaufman, Perlman, and Speciner [54]:

A public-key infrastructure(PKI) consists of the components necessary to se-

curely distribute public keys. Ideally, it consists of certificates. . . , a repository

for retrieving certificates, a method of revoking certificates, and a method of

evaluating a chain of certificates from public keys that are known and trusted

(trust anchors) to the target name.

Although this section, and the following one, do not discuss revocation in much detail,

and assume certificates will be stored on each device rather than in a universally-available

repository, both sections discuss PKIs. In particular, they contrast two competing certificate

formats and explore the differing assumptions about PKI that are inherent in these formats

themselves.

This section discusses authentication extensively. In order to avoid confusion when

describing authentication procedures, I use the termsrelying partyandtarget,2 as well as

the verbauthenticateitself, consistently throughout this section and the rest of this thesis.

If Alice demands that Bob prove his identity to her, then Alice is the relying party and Bob

is the target. AliceauthenticatesBob, whereas Bobproves his identity toAlice.3

2I borrow this terminology from Kaufman et al. [54].
3I discovered that usingauthenticateandauthenticate toto signify opposite actions was too confusing.
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2.2.2 X.509 name certificates

In order for Alice to authenticate Bob using public-key cryptography, she must first know

the real Bob’s public key value: the party she is communicating with can then prove that

he is Bob by demonstrating knowledge of the corresponding private key. If Alice does not

already know Bob’s public key, then she must obtain it from a third party that she trusts and

that she already has some means of authenticating. She might, for example, look up Bob’s

name in a secure directory that lists various persons’ public keys, but a central directory

quickly creates a bottleneck in a large, distributed environment such as the Internet. A better

alternative is to usename certificates, which allow the secure distribution ofname→public

keybindings.

X.509is the dominant name certificate4 format on the Internet; an RFC from the IETF’s

PKIX working group [86] defines the standard profile [46] for its use. An X.509 certificate,

such as the one shown in Figure 2.2, is a message generated by the entity named in the

certificate’sissuerfield that provides a public key value for the entity named in itssubject

field. The certificate’s issuer, called acertification authority(CA), uses its private key to

sign the certificate in order to prove that it was not forged. The certificate can then be dis-

tributed freely to anybody who wishes to authenticate its subject; even if the subject himself

carries it, the signature prevents him from tampering with the information it contains.

An X.509 certificate identifies both its issuer and its subject usingX.500 distinguished

names. A distinguished name provides the common name (e.g., “Nicholas C. Goffee”) of

an entity along with additional information (organizational membership, location, email

address, etc.) intended to make that name unique. (Making names unique, however, does

not necessarily make them meaningful, as we shall discuss in Section 2.3.)

4PKIX standards call X.509 name certificatespublic-key certificates(PKCs), but I use the termname

certificatein this thesis for consistency across different certificate formats.
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Certificate:
Data:

Version: 3 (0x2)
Serial Number: 307 (0x133)
Signature Algorithm: sha1WithRSAEncryption
Issuer: DC=edu, DC=dartmouth, C=US, O=Dartmouth College,

CN=Dartmouth CertAuth1
Validity

Not Before: Jul 3 17:17:37 2003 GMT
Not After : Jul 2 17:17:37 2004 GMT

Subject: DC=edu, DC=dartmouth, C=US, O=Dartmouth College,
CN=Nicholas C. Goffee/emailAddress=Nicholas.C.Goffee@Dartmouth.edu

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:e4:23:06:3f:b0:48:6f:c1:94:09:62:af:c5:ee:
cf:ad:87:bf:7c:40:7c:0c:49:41:e3:25:d2:47:fd:
...

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Key Usage: critical
Digital Signature, Non Repudiation, Key Encipherment
Netscape Cert Type:
SSL Client, S/MIME
X509v3 Subject Alternative Name:
email:Nicholas.C.Goffee@Dartmouth.edu
X509v3 Authority Key Identifier:
keyid:3F:C0:D6:C7:A7:4F:00:7E:EF:06:99:67:6C:BC:96:1E:4D:A3:77:12

Authority Information Access:
OCSP - URI:http://collegeca.dartmouth.edu/ocsp

Signature Algorithm: sha1WithRSAEncryption
be:36:45:42:b7:75:96:19:82:55:e9:36:c6:48:87:0f:93:31:
5f:48:82:b6:0e:72:41:3c:12:da:ed:4a:5c:93:d7:16:d9:b6:
...

Figure 2.2: The information in an X.509 name certificate, as decoded and displayed by the
OpenSSL library; the public key modulus and signature value are abbreviated here to save space
and improve readability. An X.509 certificate is a digitally-signed message generated by the entity
named in the certificate’sissuerfield that provides a public key value for the entity named in itssub-
ject field. It also containsversionandserial numberfields that distinguish it from other certificates
issued by the same certification authority (CA), and optionally can contain variousextensionsthat
give additional information about the certificate, its issuer, or its subject.
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Along with the fields discussed above and some administrative fields described in the

caption of Figure 2.2, an X.509 certificate may also containextensionfields. Often, a CA

adds an extension pointing to itscertificate revocation list(CRL) to all certificates it issues;

maintaining a CRL allows a CA to revoke certificates that have become invalid before their

expiration dates due to loss or compromise of the subject’s private key. A CA might also

use extensions to list various constraints on a certificate’s usage, such as whether the subject

is itself a CA (i.e., may issue its own certificates), for example, or whether the certificate

should be used to validate its subject’s signature on S/MIME emails.

2.2.3 CA hierarchies and trust models

Clearly, X.509-based authentication must involve more than just presenting an X.509 cer-

tificate and proving knowledge of the corresponding public key: the relying party must also

validate the information in the certificate. The vendor, owner, or user of the relying device

or program must configure it to treat one or more CAs astrust anchors—i.e., as CAs whose

signed certificates the device or program will simply treat as true. Usually, every CA issues

a self-signedroot certificate, containing its own distinguished name and public key, that

relying parties can use as a trust anchor.

A CA can certify another CA just as easily as it can certify an end-user, thereby creating

a hierarchy of CAs. The primary CA is said todelegateto the other, subordinate CA(s).

Delegation can decrease the load on the primary CA and also make enrollment (the pro-

cess of obtaining a certificate) more convenient for end-users. A large corporation’s CA,

for example, might delegate to subordinate CAs at a number of regional offices, each of

which certifies employees in its own region. Regional employees can then visit their local

CA, rather than the central CA, to obtain certificates. (CAs that follow stringent policies

might require a physical visit, presentation of photo ID, etc. in order to obtain a certificate.
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Some organizations operateregistration authorities(RAs) that verify members’ identities

at various locations, then send those members’ verifiedname→public keybindings off to

a central CA that issues their final certificates. An RA must sign its certificate requests

before sending them to the CA so they cannot be modified in transit.)

In order for a relying party to make use of certificates issued by subordinate CAs in

a hierarchy, it must obtain acertificate chainfor its target rather than a single certificate.

Some user Bob, for example, might have a chain of certificatesCA1→CA2→CA3→Bob,

indicating thatCA1 delegated toCA2, CA2 delegated toCA3, andCA3 certified Bob. A

relying party can then authenticate Bob even ifCA1 is the only one of the three CAs that it

treats a trust anchor, because it can learnCA2 andCA3’s public keys (needed to verify their

signatures) “on-the-fly” from certificates appearing in Bob’s chain. The relying part might

construct Bob’s certificate chain by searching for the necessary certificates in one or more

online repositories (called a “pull” model, since the relying party pulls certificates from a

directory), or Bob might carry his entire certificate chain on his own computer so that he

can present it when challenged (called a “push” model, because Bob pushes his certificates

down the authentication channel).

CA delegation potentially creates a number of hierarchical structures (and sometimes,

non-hierarchical structures), which Kaufman, Perlman, and Speciner [54] calltrust models.

For example, if one organization convinced every other organization to trust its CA and let

it delegate to their CAs, then the world would rely on themonopolytrust model (with

delegation). In reality, much of the Internet world relies on anoligarchy (informally, a

handful) of CAs. This oligarchy consists of two basic types of CA (the following slightly

oxymoronic terms are, to my knowledge, my own):

• “Competing monopolies.” Companies such as Verisign and Thawte make money by
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certifying other organizations.5 These CAs work best when they bind public keys

to globally-known names, such as “IBM” or “Yahoo”; the public can then rely on

certificates from such CAs to make sure that online parties who claim to be IBM or

Yahoo really are. (In reality, these CAs often issue certificates to businesses with

rather obscure names, meaning that they not only bind a name to public key, but also

imply that the named entity is a trustworthy business.)

• “Local monopolies.” Many organizations run their own CAs that they use to certify

their own members or employees. For example, the Dartmouth College CA certifies

Dartmouth students, faculty, and employees, who can then use their X.509 certifi-

cates to authenticate to Dartmouth-operated Web services such as personalized class

enrollment pages. Those services only need rely on the local CA; hence, it has a local

monopoly.

2.2.4 TLS authentication

TLS (Transport Layer Security) [3] is a standardized version of Netscape’sSSL(Secure

Sockets Layer) protocol. Netscape introduced SSL version 2.0 [45] as part of the Netscape

Navigator Web browser (SSL version 1.0 was never released to the public), and subse-

quently updated SSL to version 3.0 [39]; the IETF superseded both with TLS. SSL and

TLS augment TCP/IP socket-based connections with the following security features:

• Endpoint authentication. The handshake that begins an SSL/TLS session allows

either party of a connection—server or client—to demand a proof of identity from

the other party. The authentication handshake uses X.509 certificates and is designed

to prevent man-in-the-middle and replay attacks.

5I call these “competing monopolies” because each such company’s marketing department tries to con-

vince us that theirsis a monopoly.
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• Secure tunneling. The SSL/TLS handshake also allows the two connecting parties

to negotiate an encrypted tunnel to protect the privacy of their ensuing socket-based

communication. To do so, the two parties agree on a cryptographic algorithm (or

suite of algorithms) and generate a shared secret with which to encrypt their session.

• Session authentication. Throughout an SSL/TLS session, both parties attach MACs

(message authentication codes) to messages they send so that intruders cannot tamper

with their encrypted session. Just as with the encryption key, the two parties derive a

shared MAC key during their initial handshake.

Although SSL and TLS can protect any socket-based connection (and the initial

handshake works in other contexts, such as EAP-TLS), their most familiar applica-

tion is the HTTPS (secure HTTP) protocol used in Web browsers. Most often, a Web

browser demands server authentication: it requires that the server it is connecting to first

present an X.509 certificate that binds a public key to the server’s domain name (e.g.,

www.yahoo.com), then demonstrate knowledge of the corresponding private key. Typi-

cally, the server’s certificate comes from one of the “competing monopoly” CAs (see Sec-

tion 2.2.3) such as Verisign or Thawte. SSL/TLS server authentication helps to ensure that

the user of a Web browser will transmit sensitive information, such as credit card or bank

account numbers, only over an encrypted channel and only to the merchant he intends to

receive it.

Many newer Web browsers also support SSL/TLSclient authentication. In this case,

a Web server demands that the client present an X.509 certificate and demonstrate knowl-

edge of the corresponding private key. (SSL/TLS also allows a server to merely request,

rather than demand, client authentication.) Currently, many Web-based services that need

to authenticate their clients—e.g., online banking or account-based shopping services—do

so by demanding a username/password pair. SSL/TLS client authentication provides an
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alternative. Client authentication often depends on a “local monopoly” CA (again, see Sec-

tion 2.2.3), where the owner of the server operates its own CA to issue certificates to its

clients. (This model reflects real-world practice: you probably access your bank account

using a bank-issued card rather than your driver’s license, even though the latter has more

global scope as an authentication token.)

2.2.5 OS/browser keystores

Consumer operating system and Web browser platforms typically includekeystores, which

hold the following information for their users:

• A list of the user’s trust anchors: those CAs the Web browser should trust when

authenticating HTTPS servers. In reality, Web browsers come “from the factory”

(from the download site, at least) pre-configured with the root certificates of popular

(or perhaps merely persuasive) trust anchors. A user might add local CAs, or the

CAs for S/MIME email users or other non-SSL uses, to his keystore.

• A list of non-CA entities the user trusts: these might include, e.g., Web servers the

user has marked as trusted but whose CA certificates he does not have, or end-user

certificates of the user’s S/MIME email correspondents.

• A list of the user’s own, personal certificate(s) and their corresponding private

key(s), for use in SSL/TLS client authentication, perhaps, or for signing or decrypting

S/MIME email.

Conceptually, the termkeystoreoften refers not just to a database of keys and certifi-

cates, but also to the API and logic used to manipulate them. For example, rather than

treating a keystore as a database from which to read a user’s private key before signing

some data, a well-written application should instead treat the keystore as an object from

24



which it can request a “sign this data” service. This view of keystores allows an applica-

tion to use cryptographic modules—such as USB tokens, smart cards, or trusted modules

installed on or added to a computer’s motherboard—rather than software keystores. These

devices hold a user’s private key and perform signing operations with it on behalf of ap-

plications: this approach prevents the private key from ever entering the computer’s main

memory, where a malicious program might steal it. RSA Laboratories’ PKCS#11 standard

[92] describes one widely-used, abstract API for communicating with “devices which hold

cryptographic information and perform cryptographic functions”; Microsoft’s CryptoAPI

serves the same purpose on Windows machines. On the other hand, most OS and browser

keystores support, at minimum, a software cryptographic module that stores certificates

and keys on a local disk. The PKCS#12 standard [93] defines a widely-supported format

for on-disk keystores; OS and browser keystores can typically import or export this format.

The current state of OS and Web browser keystore and EAP-TLS support is as follows:

• Microsoft Windows provides an OS-wide keystore that any application can use; in

particular, both Internet Explorer and Windows’ built-in EAP-TLS client can use

it for SSL/TLS client authentication. The Windows CryptoAPI, mentioned above,

provides support for hardware-based cryptographic modules.

• Apple’s Mac OS X has provided an OS-wide keystore (Keychain, in their terminol-

ogy) for some time, but it has only begun to mature with version 10.3 of the operating

system. Like Windows, Mac OS X uses its built-in keystore for SSL/TLS client au-

thentication and for EAP-TLS. According to Apple’s Mac OS X Web site, they do

support smart cards (and presumably similar devices).

• Mozilla, which is evolving into a platform in its own right, supplies a keystore using

its own NSS (Network Security Services) library. Mozilla (and versions of Netscape
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derived from it) supports SSL/TLS client authentication and S/MIME email; how-

ever, its keystore is separate from that used by the host OS for EAP-TLS. Mozilla

supports cryptographic tokens and similar devices via PKCS#11. The last pre-

Mozilla versions of Netscape also supported SSL/TLS client authentication.

• The Java programming language/platform supports a variety of cryptographic opera-

tions via Sun’s JCE (Java Cryptography Extension), a set of cryptographic packages

that third parties can extend by building new cryptographic providers. A number of

vendors supply PKCS#11 functionality for Java, and the Swiss company Keyon also

provides JACAPI [51], a CryptoAPI wrapper for Java. Java also provides its own

PKCS#12-like, file-based software keystore format, JKS, which it uses internally to

hold the certificates of a user’s trusted code signers.

• Linux supports a rich variety of cryptographic functionality via OpenSSL, NSS, and

other open-source projects, as well as all the available Java-based products. Linux

desktop and system applications, however, do not share any single keystore among

themselves.

2.2.6 EAP-TLS revisited

WPA uses EAP-TLS to bring all the characteristics of SSL/TLS authentication to Wi-Fi

networks. TLS’s PKI-based authentication offers considerably more security and flexibility

than WEP’s broken shared-secret authentication. In particular, it allows a CA or hierarchy

of CAs, configured as the RADIUS server’s trust root(s), to add users (by issuing certifi-

cates) or remove them (by expiring or revoking certificates) in a distributed fashion—i.e.,

without directly modifying the RADIUS server’s user database. Once a supplicant authen-

ticates using EAP-TLS, the RADIUS server uses extension fields in the RADIUS packet
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format to send key material derived during the TLS handshake to the access point for use

with TKIP encryption.

2.3 Certificate-based authorization: SPKI/SDSI

SPKI/SDSI [31, 32] defines a name certificate format but also anauthorization certificate

format, both of which depart from assumptions made by X.509. SPKI/SDSI excels at

expressing temporary authorizations that reflect person-to-person relationships.

2.3.1 Authorization

TLS specifies an authentication method, but by itself provides no way to determine whether

a user ought to be granted access after proving his identity. (As an analogy, consider

whether you would let a stranger enter your home simply because he holds a valid driver’s

license that tells you his name.) In a simple arrangement, a particular CA might issue X.509

certificates only to users who are authorized to access a particular resource; any user who

could authenticate could then be granted access. Multiple CAs could even be set up to issue

authentication materials for multiple resources. Operating a CA, however, is complex and

costly; instead, it might make sense for an organization to operate a single, high-assurance

CA so that the administrators of various resources can specify authorized users by name.

Traditional, centralized authorization mechanisms that can be used with any type of

authentication include the following:

• Access-control lists (ACLs), which simply list who has permission to access a given

resource. In a Wi-Fi context, administrators could easily configure a RADIUS server

to contain an ACL of users permitted to access the network.
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• Attributesstored in a database and indexed by user name. An attribute could be

nearly anything6 that might be relevant to its relying party, such as “is more than 21

years old,” “is a member of groupprofessors,” or “has permission to access direc-

tory /var/mail/bubbaon hostmail.example.com.” LDAP [114] stores information by

X.500 name, and therefore provides an ideal way to retrieve attributes about a user

based on the subject name in his X.509 certificate.

• Policy languagessupply a general syntax for defining a complex set of conditions

under which a user should or should not be granted access. (Attributes and policies

can interact: an attribute could easily store a policy statement, and a policy might

refer to a user’s attributes.)

ACLs, attributes, and policies must either be stored in a protected, centralized server

or distributed in a secure fashion. Centralized ACLs or attribute or policy databases, how-

ever, create bottlenecks, just as centralized authentication directories do. Taking a cue

from name certificates, a number of researchers have proposedattribute certificateor au-

thorization certificateformats with which to distribute authorization information. X.509

attribute certificates [34] are much like signed LDAP directory entries: they bind attributes

to X.500 names that will be authenticated using X.509 name certificates. Assertions in a

policy language can also be turned into certificates by signing them. SPKI/SDSI, on the

other hand, defines a lightweight certificate format designed specifically for conveying per-

missions from party to party (it can be used for attributes as well). I discuss competing

standards in more detail in Section 4.3.
6Even a name. . .
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2.3.2 SPKI/SDSI motivation and history

Carl Ellison, one SPKI/SDSI’s creators, argues in [30] that the X.509 name and attribute

certificate standards are based on a number of flawed assumptions:

• X.500 distinguished names are supposedly global in nature; no global name direc-

tory, however, actually exists. In practice, each organization that relies on X.509

certificates operates a CA for its own namespace, and namespaces have not been

linked as thoroughly as expected in the original X.500 plan.

• It is possible to make names globally unique (e.g., email address), but not globally

meaningful. When someone looks up a name in a phone book, he is likely to find

several persons with the same name. There is no guarantee that the seeker will find

the additional information in an X.500 name to be meaningful—i.e., useful in distin-

guishing that particular person from others with the same common name.

• Global names introduce a potential security flaw. A human might generate an ACL

entry or attribute certificate, or use a name certificate to make a decision, based only

on the common name field of an X.500 name. (Suppose, for example, that a user

scrolls through a list of his organization’s employees, chooses the first one whose

common name matches the person he has in mind, and assigns a permission to that

person.) The common name is not necessarily globally unique, and an attacker might

take advantage of the resulting gap in verification.

To circumvent these flaws, Ellison instead argues for a PKI with the following characteris-

tics:

• Public keys as unique identifiers. In a well-designed cryptosystem, a user’s public

key value is unique. Computers can identify users by random values such as public

keys just as easily as by human-readable names.
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• Local names. Humans recognize other humans by local names. They may use nick-

names or first names merely for convenience, and they may not even know the full

names of everyone with whom they communicate. Even corporations and govern-

ments tend to identify customers or citizens by local “names” such as employee num-

ber, bank account number, or driver’s license number. Referring to a name relative to

the public key that defined it, Ellison argues, reflects the real-world use of names and

avoids the pitfalls that occur when humans become confused by non-local names.

SPKI (pronounced “spooky” or “speaky”) and SDSI (“sudsy”) were originally separate,

but similar, PKIs based on these new assumptions; they have since merged. SPKI (Simple

Public Key Infrastructure) provides an authorization certificate format that can bind autho-

rization permissions directly to public keys rather than to names, as we shall see. SDSI

(Simple Distributed Security Infrastructure) [91], designed by Ron Rivest and others at

MIT, allows each user to bind names to keyholders in a local namespace identified by his

own public key; SDSI also defines a relative name syntax that lets a user refer to names

defined by other keyholders. For the rest of this thesis, instead of writing “SPKI/SDSI,” I

use “SPKI” to refer to authorization certificates and “SDSI” to refer to name certificates.

At present, Greenpass relies entirely on SPKI authorization certificates, so this section

does not discuss SDSI in detail. Subsection 5.4.2, however, briefly describes SDSI names

and suggests how they might augment Greenpass in useful ways.

2.3.3 SPKI authorization certificates

SPKI authorization certificates bind permissions directly to public keys. Carl Ellison often

uses a triangle diagram, such as that shown in Figure 2.3, to illustrate the difference between

SPKI authorization and name-based authorization mechanisms.

Authorization mechanisms allow a computer to find out if a connecting user has per-
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Permission Public key

Name

Attribute certificate
or ACL

X.509 name
certificate

SPKI authorization certificate

Figure 2.3: Carl Ellison’s authorization triangle. X.509 name certificates contain aname→public
keybinding. A computer system that authenticates users using such a certificate must also consult
an ACL (access-control list) or attribute certificate that contains apermission→namebinding to
find out what users are allowed to do. SPKI authorization certificates, on the other hand, carry a
directpermission→public keybinding that tells an access controller what a given keyholder may do
without relying on an intermediate naming step.

mission to perform a particular action or access a particular resource. To do this using a

name-based mechanism, a computer must first authenticate a user to find out his name,

then find out if the person with that name is allowed to do what the user is requesting.

Therefore, the computer must traverse two edges of Ellison’s triangle: it must consult both

aname→public keybinding such as an X.509 certificate, and apermission→namebinding

such as provided by an ACL entry or attribute certificate. SPKI authorization certificates

can express a directpermission→public keybinding.

2.3.4 SPKI delegation

SPKI allows any user, not just a dedicated CA or attribute authority (AA), to issue autho-

rization certificates. In particular, a SPKI certificate might give a keyholder not just the

permission to do something, but also the permission todelegatethat permission, or a sub-

set of it, to others. The motivation behind delegation is simply to allow people to use SPKI
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certificates to express things they might want to do in the real world, e.g.:

• Suppose I have a SPKI certificate that grants me access to a particular directory

on an FTP server, along with the ability to delegate that permission. If I wish to

give a friend access to a certain subdirectory containing shared information, I can

simply delegate to him by issuing a SPKI certificate that grants a subset of my own

permission to him.

• Suppose I am going on vacation and want to access a number of resources (FTP

directory, bank account, etc.) while I am away. However, I do not wish to transfer my

master private key to the relatively insecure device—perhaps a PDA—that I plan to

carry with me. Instead, I can create a new key pair and delegate all the permissions

I will need while I am away to that new key pair. Like X.509 certificates, SPKI

certificates have a validity interval, so I could cause this delegation to automatically

expire at the end of my vacation.

2.3.5 The SPKI certificate format

All SPKI and SDSI objects are represented as Lisp-likeS-expressions, as defined by Rivest

[90]. S-expressions come in two basic varieties:canonicalS-expressions, a compact byte-

sequence representation used as input to hash and signature functions, andadvancedS-

expressions, used to format and print canonical S-expressions on screen or paper using only

printable characters.7 SPKI/SDSI libraries can typically process advanced S-expressions

directly: SPKI/SDSI data can therefore be transferred in a standard format that is simul-

taneously email-safe and human-readable, an advantage which X.509’s ASN.1 encoding

does not share.
7A third variety, thetransportS-expression, is simply a Base64-encoded canonical S-expression that can

be transmitted, e.g., via email without becoming corrupted.
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(public-key
(rsa

(e #010001#)
(n

|AOQjBj+wSG/BlAlir8Xuz62Hv3xAfAxJQeMl0kf93oWFzEcbK03h0kP3ueX4FaMMvsBYEqT
uCK7h1CQHvuZrsRmjZmoP08zTOfrYYstU9wHW0QrPvTPrWlh52YXygS3NE8fHLOQkjwdCVf1
CHubDxTnovrO7j7xBOsbeMgJArrvv|)))

(hash md5 |9WgBTLBGk6kIIvJVwZLbAg==|)

Figure 2.4: SPKI/SDSI refers toprincipals by directly specifying their public keys or hashes
thereof. This figure shows an RSA public key in SPKI/SDSI’sS-expressionsyntax (top), along
with its hash (bottom).

In both SPKI and SDSI, a keyholder is referred to as aprincipal. A principal can

be identified either by its full public key value or by the MD5 or SHA-1 hash thereof.

Figure 2.4, for example, shows my public key value and its hash, both as advanced S-

expressions. In an advanced S-expression, values surrounded by pound signs, such as

#010001# in the figure, express a byte or sequence of bytes by its binary value. Values

surrounded by vertical bars, such as the public key modulus value in the figure, express

a sequence of bytes by its Base64-encoded value. All other S-expression atoms, such as

public-key or rsa , are literal strings to be interpreted by a SPKI/SDSI library or its

relying program.

Figure 2.5 shows a complete SPKI authorization certificate, along with its signature. A

SPKI certificate contains the following fields:

• An issuer, identified by SPKI principal or SDSI name.

• A subject, identified by SPKI principal, SDSI name, orthreshold subject(see Sec-

tion 5.4.3).

• A (propagate)flag which, if present, allows the subject to delegate the granted per-

mission to others.

• A tag, an S-expression that specifies the permission being granted (or perhaps an
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(sequence
(cert

(issuer (hash md5 |BuFWyi13EpqzJtMff8DcsA==|))
(subject (hash md5 |9WgBTLBGk6kIIvJVwZLbAg==|))
(propagate)
(tag (greenpass-pilot-auth))
(valid (not-after "2004-07-02_17:43:06")))

(signature
(hash md5 |8i/bztbps+DU/bf2U4BtzA==|)
(public-key

(rsa
(e #010001#)
(n

|ALgZbWph3tYzwZCjPFmIMNscdMWABEunlgIWJZHOxYAYGjlvFsbQ2Xa5Kht8aq515yENb
UYeqMggJRmzhrAMS2iFpbPtfbPBgt53iIQ47NwuLUBNj1o7dYXE8xVLNPwMgmJnKdHvbS0
aQnv09/mAfpkDA0UPt85iMGxQr9BrzlRN|)))

(rsa-pkcs1-md5
|cPW9HbmLD17skMI4c9UIuQbS2dxwZl6kwuCgGlRMCmIoFJWDgK5Na8bHNwYUx2C/AzIw0yl
oL+TiBjTKAI3sgbUi/TNnuCZoJv2C+wVQ+IuwtbBTI0vQVexrVlkmnx2rzNT6vCHXFuZq4hd
aA52X+4UqhFLXrJtbxl2+aefHjUg=|)))

Figure 2.5: A SPKI authorization certificate conveys the authorization given in its(tag)field, which
must be interpreted on an application-specific basis, from its issuer to its subject. Notice that both
the issuer and subject can be identified by hashes of their public key values. The(propagate)flag,
if present, indicates that the subject is permitted to furtherdelegatethe stated permission to others.
(Note that dates in the SPKI(validity) field should always be interpreted as UTC. Furthermore,
string comparison functions will correctly compare SPKI dates according to less-than, equal-to, or
greater-than relationships.)

attribute of the subject); its meaning depends on the relying party’s interpretation.

• Validity information: an interval (as shown) or the URL of anonline test, such as a

CRL.

SPKI certificates may also contain a number of lesser-used optional fields, including a

version number and a comment; the SPKI certificate structure document [31] gives full

details.

2.3.6 SPKI certificate chains

When various SPKI principals delegate to one another in sequence, they produce a chain

of authorization certificates, just as X.509 CAs can produce a chain of name certificates. A
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party that relies on SPKI authorization certificates typically trusts one or moresources-of-

authority (SOAs)—perhaps recognized by their public keys only, or hashes thereof, rather

than by name—that define permissions for a particular resource. (An SOA is analogous to

a trust anchor; I use the terms interchangeably.) The relying party must then find a valid

certificate chain from one of its SOAs to the public key of any target whose access permis-

sions it checks. As with X.509 certificate chains, the relying party could look somewhere

for the certificates required to build a chain (the “pull” approach), or it could require clients

to prove their permissions by presenting complete chains (the “push” approach).

In the SPKI theory document [32], Ellison et al. define the semantics of a SPKI certifi-

cate chain by providing an example of how to intersect two certificates in a chain to form a

single certificate with the same meaning. (To verify a chain of more than two certificates,

one would recursively intersect the certificates until only one remains.) Specifically, they

define a 5-tuple representation for SPKI authorization certificates and define a method for

performingtuple reductionto intersect two certificates.

At a high level, for two certificates to intersect,

• the issuer of the second certificate must match the subject of the first,

• the first certificate must contain a(propagate)flag,

• the validity intervals (and online validity tests) of the two certificates must intersect

in the obvious manner, and

• the tags—i.e., permissions—must intersect.

At present, all SPKI certificates used by Greenpass contain the same tag,(greenpass-pilot-

auth), and two identical tags always intersect to form another copy of that same tag. The

reader is directed to the SPKI theory document cited above for information on the semantics

of more sophisticated SPKI tags.
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2.4 The Greenpass RADIUS server

It is cumbersome to provide guest access using standard authentication and authorization

mechanisms, such as EAP-TLS. SPKI provides an easy way to express the real-world

relationships that give rise to guest-access scenarios in the first place. Asking guests to in-

stall custom wireless networking software that supports a SPKI-based handshake, however,

seemed infeasible. Instead, Kim [55] designed a Greenpass RADIUS server that authenti-

cates a supplicant using EAP-TLS, but consults a cache of SPKI certificates to find out if

that supplicant is authorized to use the network.

2.4.1 SPKI-based access control: motivation

It is cumbersome to provide guest access using EAP-TLS with a standard RADIUS server

for the following reasons:

• It is impossible to authenticate a guest who arrives from an arbitrary home orga-

nization. Either the RADIUS server must trust his home organization’s CA, or an

administrator must set up a new account for him, possibly by having him enroll with

the local CA.

• Unless successful authentication implies authorization, an administrator must also

set up an ACL entry or policy statement granting access to the guest by name.

In a university or large enterprise, a guest is typically invited to the local premises by

a host—either an individual or a department—rather than by the organization as a whole.

This host—not a busy network administrator—ultimately vouches for a guest’s trustwor-

thiness and grants him permission to access the network. Standard authentication and au-

thorization mechanisms, however, force the host to take her guest to a busy network ad-

ministrator, who will add both authentication and authorization materials for the guest as
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described in the preceding paragraph. Upon closer examination, requiring the administrator

to perform either of these actions seems nonsensical:

• The name given to the guest has no meaning to the administrator: it serves only as

an identity by which to authorize the guest.

• The administrator asserts that the guest should be granted access by, e.g., adding an

ACL entry, but this assertion is not his own: it merely reflects the host’s assertion.8

SPKI authorization answers these problems directly and eliminates the need for an

administrator to act as middleman:

• The guest does not need a name, just a public/private key pair.

• The host can vouch for her guest by delegating to him.

By delegating to her guest’s public key, the host tells the access-control mechanism all it

needs to know: “the entity who owns this key should be granted access because I said it’s

okay.” (The host’s existing certificate chain adds, “and here’s why you should listen to

me.”)

2.4.2 “Pure” SPKI-based access control

Figure 2.6 illustrates purely SPKI-based access control to a wireless network. In this sce-

nario, an access point is configured with a single public key as its source-of-authority. That

SOA can then issue one or more authorization certificates to subordinate delegators who

propagate network access to those who need it. When a guest or other end-user associates

8In a highly sensitive environment where guest access has, nevertheless, been deemed necessary, it might

make sense for a security officer, or even a psychologist, to vouch for a guest after performing a background

check or interview.
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trusts

Figure 2.6: Purely SPKI-based access control to a Wi-Fi network. In this example, an access point
is configured with a single public key,K0, as its source-of-authority (SOA). That SOA issues a SPKI
authorization certificateC1 to a subordinate delegator, identified by her public keyK1. She in turn
issues a certificateC2 to a guest who holds keyK2. To obtain network access, the guest presents his
entire certificate chain—C1 andC2—to the access point, then proves that he owns the public key
that is the final subject of that chain.

with an access point, the AP demands proof of authorization: the user responds by first

presenting a chain of certificates originating from the AP’s SOA, then proving ownership

of the public key that is the final subject of that chain.9

This approach does not suit our needs because it would require guests to install custom

Wi-Fi drivers to support our custom SPKI-based handshake. Additionally, it would require

modifying the access point itself, or perhaps a RADIUS server behind it, to accept the new

handshake.
9The AP described operates nearly identically to the compact firewall device that Ellison et al. use as a

motivating example in the SPKI theory document [32].
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2.4.3 SPKI-based authorization with EAP-TLS authentication

The EAP-TLS handshake, as it exists, only allows a supplicant to present X.509 authenti-

cation certificates, not SPKI certificates or attribute certificates; as depicted in Figure 2.7,

such a handshake is only useful for local users. The Greenpass solution, depicted in Fig-

ure 2.8, is to use a hybrid SPKI- and X.509-based access-control mechanism that requires

a two-step Wi-Fi login process for guests:

1. the guest’s Web browser presents a SPKI certificate chain via HTTP to anauthoriza-

tion cache(described in Chapter 3), then

2. authenticates to the RADIUS server itself using an unmodified EAP-TLS handshake.

Kim’s modifications [55] to the open-source FreeRADIUS server [37] add an extra step to

its EAP-TLS authentication process: after receiving the supplicant’s X.509 certificate and

obtaining proof that the supplicant owns the public key therein, it consults the authorization

cache to see whether the owner of that public key has presented a valid SPKI certificate

chain.

Notice that, in this final scenario, the Greenpass RADIUS server “authenticates” a sup-

plicant even if it does not trust the issuer of his X.509 certificate. This works because when

a supplicant presents his X.509 certificate, he essentially claimstwo identities: his public

key and his name. The EAP-TLS handshake requires the supplicant to prove ownership of

the public key he has just claimed: the RADIUS server, therefore, can authenticate him by

one identity (his public key) regardless of whether it is able to verify his second identity

(his name). This half-authentication is entirely sufficient for our purposes, because SPKI

binds permissions directly to public keys.

We have not yet addressed the problem of roaming clients; see Section 5.3 for further

discussion.
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Figure 2.7: This illustration shows the standard X.509 PKI model used for EAP-TLS access control
to a Wi-Fi network. Here, the RADIUS server trusts a local CA that certifies all local users. The CA
certifies some user by issuing an X.509 certificateX1. That user then authenticates using a standard
EAP-TLS handshake via which he presents his local X.509 certificate and proves knowledge of the
corresponding private key. The RADIUS server makes further authorization decisions, if necessary,
based on an internal ACL. Greenpass uses this model for local users.

2.4.4 VLAN switching

Technically, our Wi-Fi authentication system never fully denies access to any user. Instead,

we provide twoVLANs(virtual local-area networks): one that provides access only to a

Web server hosting Chapter 3’s client tools, and one that provides unrestricted access to the

local Dartmouth network (as well as its Internet gateway). Our access point is configured

with two SSIDs: a broadcast one that does not require authentication but gives access only

to our restricted VLAN, and a “secret” SSID that requires authentication/authorization and

provides access to the unrestricted VLAN. Without this provision, guests would be caught

in a chicken-and-egg problem: they would need credentials in order to access the network,

but would only be able to obtain those credentials over the same network.

In theory, all users should be able to connect to a single SSID: the RADIUS protocol

includes extensions that can tell an AP to which VLAN a supplicant should obtain access.

Kim [55], however, found that the FreeRADIUS server he modified cannot use these ex-
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Figure 2.8: This illustration shows the hybrid SPKI- and X.509-based PKI model that we use for
access control to a Wi-Fi network in Greenpass. SPKI delegation occurs as in Figure 2.6 above, but
the guest must perform a two-step login process: he first presents a SPKI certificate chain via HTTP
to anauthorization cache, then presents his public key—encapsulated in an X.509 certificate—to
a RADIUS server via an unmodified EAP-TLS handshake. The RADIUS server checks that he
knows the corresponding private key via EAP-TLS, then grants him access if the authorization
cache contains a valid certificate chain with his public key as its subject.
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tensions in the manner we would prefer without major changes to its structure. A future

version of Greenpass could offer more than two VLANs that provide varying access levels

to different classes of users, as discussed in Section 5.4.1.

A final detail about our restricted VLAN is worth mentioning. It includes a DNS server

that redirects unauthorized users’ HTTP requests to the Web server hosting our client tools.

That server displays instructions and allows guests to obtain authorization credentials as

discussed in Chapter 3. Again, see Kim [55] for further details on our provisions for DNS

redirection.

2.4.5 Final clarifications

A few final clarifications are needed for the reader to fully understand the Greenpass RA-

DIUS server and its relation to the client tools described in Chapter 3.

First, local users do not need SPKI certificate chains to obtain access. The Greenpass

RADIUS server grants access to any supplicant that the local CA has certified, as illustrated

by Figure 2.7. It consults the Greenpass authorization cache only when it encounters a

supplicant who was certified by an unknown CA. (In a more elaborate configuration, the

local CA might add extensions to its X.509 certificates to indicate which of its subjects

should be granted Wi-Fi access. Or, the RADIUS server could be configured to trust no

CA and require SPKI credentials from all users who want unrestricted access.)

Second, however, local usersdo require SPKI certificate chains in order to act as del-

egators. A future implementation could allow mixed certificate chains in which, e.g., the

authorization cache would accept X.509 certificates containing a certain “delegator” exten-

sion as ancestors to a SPKI certificate. For now, however, a guest must present a full SPKI

certificate chain that originates from the authorization cache’s SOA, propagates through

zero or more delegators, and ends with the guest’s own public key.

42



Third, the delegator/guest scenario is just one scenario Greenpass can handle. Non-

local users can easily act as delegators if their own SPKI certificates contain the(propagate)

flag. Such a use might prove useful if, say, a large conference brought a number of guests

to a university campus: the local conference organizers could designate certain non-local

conference attendees as trusted delegators, who could then help expedite the process of

providing Wi-Fi access to all other attendees. (On the other hand, because SPKI provides

only a boolean(propagate)flag rather than an integer “delegation depth limit,” our current

approach cannotpreventdelegators from giving their guests the power to delegate. This is

a limitation inherent in SPKI.)

2.5 Summary

Greenpass uses a hybrid SPKI- and X.509-based access-control mechanism to allow de-

centralized, delegated authorization of Wi-Fi network users.

IEEE 802.1xforms the basis of our approach by enabling Wi-Fi users to authenticate

via EAP-TLS, an X.509-based handshake derived from the TLS (formerly SSL) client au-

thentication method supported by most modern Web browsers. While X.509 enables an or-

ganization to decentralize its authentication information, standard EAP-TLS still requires

a RADIUS server to consult an ACL or other centralized authorization mechanism to find

out whether an authenticated user should be granted network access. X.509’s particular

PKI structure poses two major obstacles to easy guest authorization:

• it is impossible to authenticate a guest who arrives from a home organization whose

CA the local RADIUS server does not trust, and

• even if the guest could authenticate, a central administrator would need to add an

ACL entry or policy statement to the RADIUS server in order to grant him access.
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SPKI authorization answers these problems directly. The person who invited the guest

candelegateWi-Fi access privileges directly to him—without the intervention of a network

administrator—by issuing him a SPKI certificate. Furthermore, the guest’s host can issue

this certificate directly to the guest’s public key value rather than relying on a CA to provide

a name for him. Unfortunately, a purely SPKI-based access-control mechanism would

require a custom handshake and custom Wi-Fi drivers to support it, greatly complicating

guest access.

Kim’s Greenpass RADIUS server [55] allows a hybrid approach:

• local users connect using a standard EAP-TLS handshake with X.509 certificates

only, but certain local users might also obtain SPKI certificate chains that designate

them asdelegators;

• a guest can ask a delegator to authorize him directly via a new SPKI certificate;

• the guest presents this SPKI authorization credential to anauthorization cacheby

sending it in an HTTP cookie; then

• the guest authenticates to the RADIUS server itself using an unmodified EAP-TLS

handshake.

This approach provides the benefits of SPKI delegation without requiring a custom client

handshake. Unauthorized users are not rejected entirely, but are put on a restricted VLAN

that provides access only to the Greenpass Web application server described in Chapter 3.
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Chapter 3

Greenpass client tools

At the end of Chapter 2, we saw how the Greenpass RADIUS server bases its access-control

decisions on SPKI/SDSI certificates. This chapter describes a set of Web-based client tools

that allow local users to create these certificates by delegating to guests. This chapter is

organized as follows: Section 3.1 outlines our requirements for the client tools, Section 3.2

describes the trade-offs we considered and the design decisions we made in order to meet

these requirements, Section 3.3 describes the final set of components I created and how

information flows between them, and Section 3.4 describes my implementation of these

components in greater detail.

3.1 Requirements

At the highest level, the Greenpass delegation process takes place as follows:

1. a guest transmits his public key value (or a hash thereof) to a delegator, and

2. the delegator issues a new SPKI certificate to the guest—referring directly to the

guest’s public key as the certificate’s subject—that grants him Wi-Fi access privi-
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leges.

This section analyzes these requirements in greater detail.

3.1.1 Guest requirements

Before the Greenpass RADIUS server will grant a guest access to our unrestricted VLAN,

the guest must possess the following:

• A key pair: specifically, a key pair associated with an X.509 name certificate. (He

needs an X.509 certificate, rather than just a raw key pair, so his WPA client software

can authenticate to the Greenpass RADIUS server using EAP-TLS.)

• A chain of SPKI/SDSI certificatesthat proves he is authorized to access the local

Wi-Fi network.

Our client tools must enable a guest to obtain these materials. As PKI grows in pop-

ularity among various organizations, guests will increasingly have key pairs and X.509

certificates already; we will, however, need to generate them for those who don’t. To ob-

tain a SPKI/SDSI certificate via delegation, a guest—we will call him Bob—must interact

with a local user, Alice, who is permitted to delegate Wi-Fi access to others. Our client

tools, therefore, must allow Bob to complete the following steps:

1. obtain a key pair and associated X.509 certificate, if necessary;

2. transmit the public key value from his X.509 certificate to Alice; and

3. receive a SPKI/SDSI certificate chain granting him Wi-Fi access after Alice has cre-

ated it, and store it in such a way that his device can present it upon demand.

In addition, these steps should rely only on software that Bob already has installed.
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3.1.2 Delegator requirements

In order for Alice to delegate to Bob, our client tools must enable her to do the following:

1. Receive Bob’s public key value.

2. Verify that the public key value she has received really belongs to Bob. Alice pre-

sumably knows Bob and can identify him by sight or voice, but we cannot assume

that she already knows his public key or that she treats Bob’s home CA as a trust

anchor. Therefore, our client tools must provide a way for Alice to bind her mental

“authentication” of Bob to a digital public key value.

3. Construct a SPKI certificate that authorizes Bob to use the Wi-Fi network.

4. Sign the resulting SPKI certificate using her own private key.

5. Append the new SPKI certificate to her own SPKI certificate chain (i.e., the one that

gives her authorization to delegate in the first place).

6. Transmit the new certificate chain back to Bob.

Ideally, delegators, like guests, should not need to install custom software. In a straight-

forward scenario where delegators will invariably be local users at some particular orga-

nization, custom software might be acceptable—it could be pre-installed on all machines

provided or sold through that organization. Even with this constraint, however, delegators

who rarely use their privilege may not wish to have this extra software or deal with the

hassle of upgrading it on each of those few occasions they need it. Additionally, avoid-

ing custom software makes our solution more flexible, because it can support non-local

delegators such as the trusted conference attendees used as an example in Section 2.4.5.
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3.2 Design choices

The most challenging problems posed by the previous section’s requirements are as fol-

lows:

• The guest needs to transmit his public key value to the delegator, and the delegator

needs to transmit a SPKI certificate chain back to him. We would like to avoid custom

software (or hardware) on either side.

• We need access to the delegator’s private key, again, preferably without requiring her

to install custom software.

• The delegator needs to make sure the public key she delegates to is the public key of

her intended guest.

• The guest’s device needs to store his new SPKI certificate chain and present it upon

demand, but we do not wish to modify the guest’s Wi-Fi software to support a custom

handshake.

This section describes how we solved these problems. Figure 3.1 illustrates the flow of

information in our final design, which Section 3.3 describes in full detail. Figure 2.8 illus-

trates how our client tools’ design fits together with a Wi-Fi access point and the Greenpass

RADIUS server.

3.2.1 Key and certificate transmission

As we saw in the previous section, the Greenpass client tools must provide a two-way

communication path between guest and delegator: a guest needs to transmit his public key

value to a delegator, and the delegator needs to transmit a new SPKI certificate back to the

guest after signing it.
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Keystore
Subject: Bob
Public Key:
  00:e4:23:06:...

Introduction
Cache

Delegation
Applet

Subject: Bob
Public Key:
  00:e4:23:06:...

Authorization
Cache

Cookies
(cert
 (issuer (hash md5 |BuFWyi13...
 (subject (hash md5 |9WgBTLBG...
 (tag (greenpass-pilot-auth)))

Guest device Delegator deviceWeb server/apps

Delegator

(sequence
 (cert
  (issuer (hash md5 |pT26mK07...
  (subject (hash md5 |BuFWyi13...
  (propagate)
  (tag (greenpass-pilot-auth)))
 (cert
  (issuer (hash md5 |BuFWyi13...
  (subject (hash md5 |9WgBTLBG...
  (tag (greenpass-pilot-auth))))

1 3

4

5

6

2

RADIUS server

Figure 3.1: The Greenpass delegation process takes place according to the sequence shown in this
diagram. Dotted lines in the figure represent the boundaries of different machines or “domains.”
A line that passes through the “Web server/apps” domain indicates that that information passes
through the Web apps en route to its final destination. Referring to the numbers shown above, the
delegation process is as follows. (1) A guest presents his public key value—wrapped in an X.509
certificate—to the guest introduction Web app, which then stores it in the introduction cache. (2)
The guest Web app generates a visual fingerprint of the guest’s public key and sends it back to the
guest’s Web browser, which displays it on his screen. (3) A delegator connects to the delegation
Web app and retrieves the guest’s public key value from the introduction cache. The Web app
launches the delegation applet in the delegator’s Web browser and sends the guest’s public key to
it. (4) The delegation applet displays the guest’s visual fingerprint; the delegator must validate it by
comparing it to the one displayed on the guest’s screen. (5) If the delegator successfully verifies the
guest’s identity, the delegation applet will construct and sign a SPKI certificate that propagates Wi-
Fi network access privileges from the delegator to the guest. It then submits this certificate (along
with the delegator’s existing certificate chain) back to the delegation Web app, which forwards it
to the authorization cache. (6) When the guest refreshes his Web browser or revisits the Greenpass
front page, the Web app recognizes him as someone waiting for authorization credentials, retrieves
his fresh certificate chain from the authorization cache, and sends it to his Web browser’s cookie
store.
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We initially considered giving delegators a physical device, such as a USB thumb drive,

on which to pass information back and forth. This approach has a number of drawbacks: it

does not provide an automated way for guests without key pairs to generate them (unless the

device includes custom software that does so), it requires guests to export their certificates

to a file on the device, it requires the purchase of a significant number of such devices, and

it can be a hassle to work around driver problems and virus scans when using such devices

on guest computers.

Direct transmission of keys and certificates over the network or a private channel would

have significant advantages. Delegators could, for example, run delegation services from

their own machines that guests would discover using, e.g., Apple Computer’s Rendezvous

protocol [4]. Alternatively, the guest and delegator devices might exchange information

directly using an infrared channel. These solutions, unfortunately, would require custom

software or hardware on the guest’s machine.

In the end, we chose to provide key and certificate transmission using a Web server that

provides a rendezvous point between guest and delegator. This approach has the following

advantages:

• The Web server can learn the guest’s public key value via SSL client authentication.

As we observed in Section 2.4.3, an SSL or TLS handshake enables a server to learn

a client’s public key value and check his knowledge of the corresponding private key,

even without trusting the issuer of the client’s X.509 certificate.

• In most cases, the guest will not need to export his EAP-TLS certificate to a file.

The major client operating systems’ (Windows, Mac OS X) default Web browsers

(Internet Explorer, Safari) use OS-wide keystores, which they share with EAP-TLS

and other clients, for SSL client authentication.

• Web browsers that support SSL client authentication typically support key generation
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and certificate enrollment as well, which will provide a convenient way to get these

materials to guests who do not already have them.

• Web browsers are ubiquitous on general-purpose networked computers.1

In our current design, as shown in Figure 3.1, the guest presents his public key (encap-

sulated in an X.509 certificate) to a Web application that we provide. This Web application

stores his certificate in anintroduction cachefrom which the delegator can later retrieve it

using a complementary Web application. The delegator, in turn, sends the new SPKI cer-

tificate back to her Web application, which stores it in anauthorization cachefrom which

the guest can retrieve it using his Web application.

3.2.2 Delegation

In order to assist a delegator in signing a SPKI certificate for her guest, our delegation

solution needs access to the delegator’s private key. Merely constructing the certificate

is not a problem: our Web server could build it on the delegator’s behalf, then send it

to the delegator only for the final signing operation. Accessing the delegator’s private key,

however, poses a problem. Web browsers do not allow Web servers to access a user’s private

key, for obvious reasons; this consideration rules out a purely HTML-based approach. We

considered a number of possibilities for our delegator tool.

I initially considered using CAPICOM [61], an optional ActiveX control that Microsoft

provides for use by Windows developers. CAPICOM allows JavaScript, VBScript, etc. to

access a subset of the Windows CryptoAPI. In particular, it allows JavaScript embedded in

a Web page to sign text using the browser user’s private key. Signing a SPKI certificate us-

ing CAPICOM provided difficult, but not impossible: the text to be signed must be passed

1Section 5.7 discusses how we might accommodate VoIP phones and other limited networked devices that

lack Web browsers and/or 802.1x authentication.
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to CAPICOM’sSign()function as a Unicode string, but one can provide an arbitrary byte

string as an argument by including escape characters in the text (e.g.,"\u35c9" ), so long

as the intended byte string has even length. The length of a SPKI certificate in canonical

form can easily be adjusted by adding a SPKI(comment)field. Still, this approach has

numerous drawbacks. First, installing the CAPICOM library on all an organization’s ma-

chines would create an enormous security risk: a Web page can sign data using a user’s

private key without the user seeing the data to be signed! Second, the resulting signa-

ture is created in PKCS#7 [94] format, rather than the PKCS#1 format normally used by

SPKI/SDSI. PKCS#7 signatures are larger, and we would have needed to modify existing

SPKI/SDSI libraries to support them. Finally, CAPICOM-based signing would only be

available on Microsoft Windows platforms using Internet Explorer, and we wished to keep

our tools compatible with multiple platforms.

I also considered writing a standalone application to support delegation. This approach,

too, has its problems: it requires rewriting the tool for each platform that delegators might

use, and it does not integrate particularly well with the Web-based portion of the client

tools. A slight variation on this approach would implement the application as an XPCOM

[64] component that runs inside Mozilla (or recent versions of Netscape); only a recompile,

rather than a rewrite, would be needed to port such a component to new platforms. I

dismissed this idea also: it provides good integration with the Web-based interface we have

already chosen for guests, but forces all delegators to install Mozilla. We did not wish to

force users to install a particular browser just to delegate.

In the end, I implemented the delegator tool as a signed Java applet. A Web browser

will run a signed applet only if its user chooses to mark the signer’s X.509 certificate as

trusted. Signed applets have greater access privileges than untrusted applets: in particular,

they can access the user’s local filesystem. The current delegation applet uses this privi-
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lege to load the delegator’s private key from a password-protected PKCS#12 keystore file.

Requiring delegators to pre-install the applet signer’s certificate is not unreasonable: an

organization could distribute a custom trust anchor certificate for signed Java code more

easily than it could distribute custom software.2 Java also provides highly mature technol-

ogy for developing full-fledged cross-platform applications, so the delegation applet could

easily be transformed into a standalone or Java Web Start [99] application if that option

appears more appropriate in the future.

3.2.3 Guest introduction and authentication

Alice receives Bob’s public key value via an insecure channel (the Web), and therefore must

validate it before using it to identify Bob in a SPKI certificate. The Web server that learns

Bob’s public key via SSL and transmits it to Alice cannot truly authenticate him, because it

does not recognize his home CA. Neither does any software on Alice’s computer recognize

Bob’s home CA. The burden therefore rests on Alice to “authenticate” Bob by some other

means. Ellison and Dohrmann [28] call this processintroduction, which, in their words,

consists of “establishing that the key belongs to the person you think it does.” (Section 4.4

discusses Ellison and Dohrmann’s particular introduction problem in more detail.)

A similar situation might arise if Alice and Bob were users of Phil Zimmermann’s

PGP secure email program. To encrypt mail for Bob’s eyes only, Alice would first need

to know his public key value. Although PGP supports the use of CAs, PGP users often

exchange public keys values by transmitting them over an insecure channel, then comparing

theirpublic key fingerprintsto ensure that the values were not modified—by accident or ill

2Not every Java runtime environment uses the OS-wide keystore to hold trust information regarding code

signers. Future work might include discovering all the quirks of various keystores and Java environments,

and identifying how best to distribute initial trust anchor certificates for the smoothest Greenpass experience.

See Section 5.2 for further discussion.
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intent—during transmission. A fingerprint is simply the hexadecimal hash value (computed

using, e.g., MD5 or SHA-1) of a user’s public key: e.g.,29 6F 4B E2 56 FF 36 2F AB 49

DF DF B9 4C BE E1. To follow standard PGP culture, Bob would either read Alice his

fingerprint (in person or over the phone) or print it on his business card, which he would

then hand out to Alice and others.

Average users are unlikely to use this process correctly, however: Ellison and

Dohrmann point out that “key verification (e.g., the comparison of hex key fingerprints)

is the geekiest, slowest, most painful and most cumbersome part of the introduction pro-

cess.” To speed up the process, they suggest the use of avisual hash, also called avisual

fingerprint. To create a visual hash, a computer simply transforms a hexadecimal finger-

print value into a unique image. A human can compare two visual hashes more much more

quickly than two hexadecimal hashes.

We chose to use visual hashing for guest introduction in Greenpass. The client tools

generate visual fingerprints using an adaptation [52] of Ian Goldberg’sVisprint program

[43]. Visprint transforms a 128-bit MD5 hash into a colorful fractal image, as shown in

Figure 3.2. (Incidentally, Goldberg originally designed Visprint to aid in the exchange of

PGP keys.) Our solution is not dependent on visual hashing: any easy method of hash

comparison—visual, aural, or otherwise—would suffice.

3.2.4 SPKI certificate storage

After Alice delegates to Bob, Bob’s device needs to store his new certificate chain—which

consists of one new certificate appended to Alice’s existing chain—where it can automati-

cally present it upon demand. Unfortunately, the EAP-TLS handshake only allows a suppli-

cant to present authentication (X.509) certificates, not SPKI certificates (or X.509 attribute

certificates, which could serve the same purpose). Bob must, therefore, transmit his autho-
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Figure 3.2: A visual fingerprint of the public key shown in Figure 2.4, generated by Johnston’s
newer adaptation [52] of Ian Goldberg’sVisprint program [43]. Visprint transforms a 128-bit MD5
hash into a unique image such as the one shown here.
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rization certificates via an outside channel. We chose to send Bob’s Web browser an HTTP

cookie containing his certificate chain. Bob’s Web browser will store it without Bob’s in-

tervention and present it back to our Web server each time Bob connects to it. We also add

Bob’s certificate chain to anauthorization cache(discussed below) of valid certificates. If

Bob’s credentials expire from this cache, he can revisit our Web server and instantly be-

come re-authorized when his browser presents his certificate chain, instead of having to

go through the introduction and delegation process again. Section 3.4 describes our use of

HTTP cookies in greater detail.

3.3 Design

I implemented the Greenpass client tools by building five components, used in the pilot

described by Powell [87]:

1. A set of threeGreenpass Web applications:

• aguest introduction Web app,

• a delegation Web appthat wraps and launches the delegation applet described

below, and

• a front pagethat serves as a rendezvous point for both guests and delegators.

These applications allow users to interact with the remaining four components via a

Web browser. I implemented all three Web apps in Python using the Albatross [2]

Web application framework, and they are hosted on an Apache Web server.

2. A dummy CAthat the Web applications use to obtain temporary X.509 certificates

for guests who need them. The dummy CA is simply an XML-RPC [112] daemon,

written in Python, that wraps OpenSSL’s basic CA functionality.
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3. An introduction cache, another Python-based XML-RPC daemon, that holds guests’

X.509 certificates until delegators retrieve them and extract the public keys from

them.

4. A delegation appletthat enables delegators to verify their guests’ identities and con-

struct and sign SPKI certificates.

5. An authorization cachethat serves two related purposes:

• it holds freshly-issued SPKI certificates in a place where guests can pick them

up, and

• it caches SPKI certificates that guests have recently presented to our Web server

so the Greenpass RADIUS server knows to which guests to grant access.

The authorization cache is also an XML-RPC daemon, but is written in Java to take

advantage of the JSDSI SPKI/SDSI library [53]. At present, the authorization cache

also provides validation logic for SPKI certificate chains.3

Figure 3.1 illustrates the Greenpass delegation process as a flow of information among

the guest’s Web browser, the introduction and authorization caches, and the delegation

applet. The dotted lines in the figure represent the boundaries of different machines or

“domains”.4 A line that passes through the “Web server/apps” domain indicates that that

information passes through the Web apps en route to its final destination.

3We chose this approach because the JSDSI library proved easier to use than an analogous C library [91]

that we originally considered linking to our modified FreeRADIUS server. Section 5.1 discusses the security

issues with this approach.
4As drawn in Figure 3.1, the domains reflect the setup we used for the Greenpass pilot: i.e., the introduc-

tion cache coexists on the same machine with our Web server and its hosted applications, and the authorization

cache coexists on the same machine with our Greenpass RADIUS server. The Web apps can be reconfigured

to communicate with introduction and authorization caches anywhere.
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Referring to the numbers shown in Figure 3.1, the Greenpass delegation process takes

place as follows:

1. A guest presents his public key value—wrapped in an X.509 certificate—to the guest

introduction Web app, which then stores it in the introduction cache.

2. The guest Web app generates a visual fingerprint of the guest’s public key and sends

it back to the guest’s Web browser, which displays it on his screen.

3. A delegator connects to the delegation Web app and retrieves the guest’s public key

value from the introduction cache. The Web app launches the delegation applet in

the delegator’s Web browser and sends the guest’s public key to it.

4. The delegation applet displays the guest’s visual fingerprint; the delegator must vali-

date it by comparing it to the one displayed on the guest’s screen. (Aural hash com-

parison methods could be added to enable secure guest introduction via telephone.)

5. If the delegator successfully verifies the guest’s identity, the delegation applet will

construct and sign a SPKI certificate that propagates Wi-Fi network access privileges

from the delegator to the guest. It then submits this certificate (along with the dele-

gator’s existing certificate chain) back to the delegation Web app, which forwards it

to the authorization cache.

6. When the guest refreshes his Web browser or revisits the Greenpass front page,

the Web app recognizes him as someone waiting for authorization credentials, re-

trieves his fresh certificate chain from the authorization cache, and sends it to his

Web browser’s cookie store.

Figure 2.8 illustrates how our client tools’ design fits together with a Wi-Fi access point

and the Greenpass RADIUS server.
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3.4 Implementation

This section describes various implementation details of the Greenpass client tools. It is or-

ganized around the functions of the three Web applications: guest introduction, delegation,

and front page/rendezvous point. Subsection 3.4.1 describes the common functionality

that supports all three Web applications (and, to some extent, the Python-based daemons),

while each of the remaining three sections describes a Web app along with the lower-level

components that it uses.

3.4.1 Web applications: common functionality

The Albatross framework [2] provides a lightweight set of classes and utilities which allow

developers to write Python-based CGI scripts that are logically organized as Web appli-

cations. I originally wrote the Greenpass Web interface using standalone CGI scripts, but

decided to re-implement it using Albatross because its templating engine allows a devel-

oper to separate logic (Python code) and presentation (HTML code) in a natural manner. It

is also simple enough, and its implementation readable enough, that I was able to augment

it with extra functionality by extending the provided Albatross classes rather than patching

them. This extra functionality includes custom use of cookies, HTTPS support with client

authentication, and custom methods for accessing the various Greenpass daemon compo-

nents.

All three Greenpass Web applications cooperate via cookies placed in their users’ Web

browsers. One cookie,greenpasshash, holds the MD5 hash of a user’s public key as a hex-

adecimal string: e.g., on my machine this cookie contains the valuef568014cb04693a9-

0822f255c192db02 .5 A second cookie,greenpasswaiting, is only present between the

5The Web apps use this cookie for identification only, not as a form of authentication. See, however,

Section 5.1 for a discussion of rough edges involving the use of this cookie.
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time a guest introduces his public key and the time he receives a certificate chain. Fi-

nally, greenpasschaincontains a user’s SPKI certificate chain itself as a Base64-encoded

canonical S-expression.

We wish to use a guest’s existing X.509 certificate and key pair, if they exist, for Green-

pass identification; I therefore had to configure the Apache server that hosts the Web apps

to obtain a client’s certificate, if it exists, and pass it on to the CGI script that wraps the

guest Web app. Apache’s HTTPS module,modssl, recognizes a configuration directive,

SSLVerifyClient, that controls whether Apache should demand client authentication and

sets the verification level for client certificate chains. For the Greenpass Web apps, I set

the level tooptional no ca, which, fortuitously, requests a client certificate and accepts it

even if Apache does not recognize its issuer. (If Apache demanded, rather than requested,

client authentication, then guests without certificates could not connect to it; if it accepted

only those certificates issued by known CAs, then only guests from organizations with

previously-trusted CAs could connect.) I also configured Apache to export various HTTPS

session information, including the client’s PEM-encoded certificate, to environment vari-

ables when running CGI scripts, allowing the Web applications themselves to read and

process this information.

The Web applications also share Python modules that allow them to process certificates.

One module uses M2Crypto [59], a set of Python wrappers around OpenSSL, to process

guests’ X.509 certificates—most importantly, to extract public key values from them.6 The

other module is a lightweight canonical S-expression generator that translates public keys

into their SPKI/SDSI representation and hashes them. These raw hash values are then

converted to hexadecimal strings and used to identify Greenpass users, as discussed earlier.

6I had to modify M2Crypto to add support for an OpenSSL function that extracts an RSA public key

structure and makes its exponent and modulus available as arbitrary-precision integers; this patch required

only three lines of C code, however.
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3.4.2 Guest introduction

The guest introduction Web app obtains a guest’s X.509 certificate by reading it from an

environment variable set by Apache, as described above, then extracts his public key value

and generates the visual fingerprint thereof. A guest can also introduce his X.509 certificate

by uploading it from a PEM-formatted file on his local hard disk (in case his browser does

not support SSL client authentication), or can generate a new X.509 certificate using our

dummy CA (described below). To make the guest’s Web browser display his fingerprint,

our Web app sends the browser a page including an HTML<IMG> tag that points to a short,

auxiliary CGI script that wraps the command-linevisprint program; this script generates

the actual fingerprint image and sends it to the guest’s browser as JPEG data. Since gener-

ating a visual fingerprint is fairly expensive, the script in question caches fingerprints as it

generates them so it can redisplay them quickly.

In order to help a delegator look up a particular guest, the guest Web app also calculates

a four-digitsubject IDand displays this to the guest. It currently derives this number from

the guest’s public key fingerprint, modulo 104. This “mini-fingerprint” is clearly not large

enough to serve any security purpose; it merely provides a convenient way for a guest to

communicate his public key identity to a delegator, so the delegator can locate it among

many other keys that may have been introduced recently.7

After the guest introduces his certificate, he can simply wait at the page that shows his

visual fingerprint and refresh his browser after someone has delegated to him. The Web app

will then retrieve his SPKI certificate chain from the authorization cache and send it to his

browser as a cookie. I fully describe the use of cookies for authorization in Section 3.4.4,

below.

Figure 3.3 shows a screenshot of the guest introduction Web app’s final page.

7Section 5.2 discusses ways to streamline this approach.
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Figure 3.3: A screenshot of the Guest introduction Web app. The guest waits for a delegator after
reaching the page shown, which includes a four-digitsubject IDthat helps the delegator find the
guest’s record in the introduction cache as well as avisual fingerprintof the guest’s public key.
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Dummy CA enrollment

The guest Web app includes an interface to the dummy CA daemon that lets guests ob-

tain a key pair and associated X.509 certificate. The dummy CA does not require a high-

assurance client verification process, because no party relies on it as a naming authority

and the certificates it issues carry no implicit authorization. Enrollment with the dummy

CA is a simple two-step process:

1. The guest visits the enrollment page and enters some basic identifying information in

an HTML form, consisting of only three distinguished name (DN) fields: common

name (required), organization (optional), and email address (optional). (Nothing

prevents the guest from using a nickname as his common name.) When the guest

submits the form, his Web browser generates a new key pair, stores the private key

locally, and submits the public key to the Web server as acertificate request.

2. After the guest submits the enrollment form, the Web app forwards his certificate

request to the dummy CA daemon, which responds with a new, signed X.509 certifi-

cate. The Web app sends the guest’s browser a confirmation page that includes code

to install the new certificate in the user’s keystore automatically.8

The details of certificate enrollment differ between the Netscape/Mozilla family of Web

browsers and Internet Explorer; readers interested in the details should refer to the source

code of either the Greenpass guest Web app and dummy CA or to the open-source

PyCA [88] and OpenCA [80] projects.

8Netscape, Mozilla, and Internet Explorer provide for automatic installation of client certificates; Apple’s

Safari browser requires its user to download the certificate, then double-click on the resulting file. The guest

introduction Web app points Safari to an auxiliary CGI script to cause it to download the new certificate.
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The introduction cache

The introduction cache is extremely simple. It stores X.509 certificates, indexing them by

4-digit subject ID (see above) for later retrieval by the delegation Web app.

3.4.3 Delegation

The delegation Web app allows a delegator to search for a guest’s X.509 certificate by 4-

digit subject ID. It then displays a list of matches,9 letting the delegator choose between

them by common name, organization, and email address information (like the subject ID,

this information serves no security purpose, but facilitates preliminary identification). Af-

ter the delegator chooses her desired guest, this Web app launches the delegation applet

and sends it the MD5 hash of the guest’s public key. The delegation applet, discussed in

detail below, takes care of guest fingerprint verification and constructs and signs a SPKI

authorization certificate for the guest.

The Web app communicates with the delegation applet using LiveConnect [68]. Live-

Connect, developed by Netscape but now supported in Mozilla, Internet Explorer, Safari,

and other browsers, allows JavaScript embedded in an HTML page to call public methods

of a Java applet included in the same page and, conversely, allows an applet to manipulate

components of its HTML page in the same way a JavaScript routine might. When the dele-

gator selects her intended guests from the list of matches and clicks the “Delegate!” button,

JavaScript code embedded in the page sends the delegation applet the hash of that guest’s

public key; it is at this point that the delegation applet displays its main window. After the

delegation applet runs and creates a signed SPKI certificate, it in turn uses LiveConnect

9Normally, it will only display one match; it displays a list of matches if it finds more than one guest with

the same subject ID number. Due to the birthday paradox, we can expect collisions to happen after around

100 guests have introduced themselves.
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to place the fresh certificate in a hidden HTML form field and automatically submit the

form back to the delegation Web app. In this way, the Web app receives the new certificate

server-side and sends it to the authorization cache.

The delegation applet

Figure 3.4 shows a screenshot of the Greenpass delegation applet. This Java applet itself

allows a delegator to verify her guest’s visual fingerprint and specify a validity interval for

the guest’s new certificate, as well as specify whether it should contain the SPKI(propa-

gate)flag. The first time it runs, it requires her to choose a PKCS#12 file that contains the

key pair matching her Greenpass certificate chain.

The applet forces a delegator to verify her guest’s identity by choosing his visual fin-

gerprint from among 16 candidates. It generates the 15 incorrect fingerprints by feeding

random 128-bit strings (the same length as an MD5 hash) to the Visprint generator. The

original delegation applet, on the other hand, showed a single fingerprint and simply asked

the delegator if it matched the guest’s. The newer approach does not absolutely prevent the

delegator from skipping the verification step—she could run the applet twice, for exam-

ple, and see which image is common to both sets of fingerprint candidates—but it makes it

more tedious to skip verification than to not skip it, an important consideration in designing

user interfaces for security systems. (As an additional benefit, the use of visual, rather than

hex, fingerprints means thatnot skipping verification isnot tedious. In fact, users at the

Greenpass pilot appeared to enjoy comparing one another’s visual fingerprints.) In order

to create visual fingerprints in Java, I ported an adaptation of the Visprint program [52],

written in C, to a Java class.

Having the applet itself create visual fingerprints increases the security of the dele-

gator’s private key. If the delegation Web app itself provided fingerprint verification and
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Figure 3.4: A screenshot of the Greenpass delegation applet. This Java applet allows a delegator to
verify her guest’s visual fingerprint and specify a validity interval for the guest’s new certificate, as
well as specify whether it should contain the SPKI(propagate)flag.
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merely sent the verified public key hash to the applet, then an adversary could hijack the

applet. Specifically, the adversary could easily create a fake Web application that sends

our applet unverified public key values. The delegator’s Java environment would trust the

applet itself to use her private key—the applet is signed—but the delegator would have no

way of verifying to whom the applet was about to issue a certificate.

The delegation applet uses standard Java cryptography functionality for signing opera-

tions, and custom S-expression generation routines for certificate generation. The wrapper

class it uses to access the delegator’s PKCS#12 keystore is general enough that another

programmer, given time, might be able to wrap it around platform- or browser-specific

keystores, such as provided by Windows or Mozilla, by including a specialized JNI (Java

Native Interface) library for each target platform. The applet originally relied on an older

Java SPKI/SDSI library from MIT [63], but that library included far more SPKI/SDSI

functionality than required, and further depended upon another third-party cryptographic

library. Since the applet performs only one limited task—generating and signing a certifi-

cate delegating from one hash to another—and uses only canonical S-expressions, I added

code to generate the needed S-expressions internally. This step reduced the download size

of the applet by a factor of 10.

3.4.4 The Greenpass front page

The Greenpass front page provides a rendezvous point and switchboard of sorts for all

Greenpass users. When someone connects to it, it uses the various cookies discussed earlier

to identify that user and detect whether he is authorized, and if so, whether as a guest or as

a delegator. It then displays the user’s status along with appropriate options for that class of

user: it displays a short explanation of Greenpass to unauthorized users and offers to redi-

rect them to the guest introduction Web app, and it allows authorized delegators to go to the
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delegation Web app. It also provides all authorized users (delegators or guests) two util-

ity options: they can view their SPKI certificate chains as advanced (i.e., human-readable)

S-expressions, and they can clear all Greenpass-related cookies from their browsers.

The front page also handles nearly all cookie manipulation for the Greenpass client

tools. (As mentioned earlier, however, the guest introduction Web app can retrieve cer-

tificate chains for waiting guests, and it is responsible for initially setting thegreen-

passwaiting cookie after guests introduce themselves.) When a user connects, the front

page Web app goes through the following decision process:

• If the cookiegreenpasshashdoes not exist in the user’s Web browser, the user is

unauthorized. Otherwise, use it as a SPKI principal with which to identify the user.

• If the cookiegreenpasswaiting is present, check the authorization cache to see if

a new certificate chain is available for this principal. If so, install it in thegreen-

passchain cookie in the user’s Web browser, then query the authorization cache

again to determine if this user has been authorized as a guest or as a delegator. If no

chain is available, the user must continue waiting.

• If the cookiegreenpasswaiting is not present, check the authorization cache for the

user’s status (unauthorized, guest, or delegator).

• If checking the certificate cache fails, look for the cookiegreenpasschain in the

user’s browser. Try to put it back in the authorization cache, which will determine if

the chain is valid and whether it authorizes the user as a guest or as a delegator.

If the user is newly authorized (has just received his certificate chain), the front page dis-

plays a message to this effect and explains which SSID to connect to for full access. If

the user is re-authorized, it explains that his certificate had expired from the authorization

cache, but that he should now be able to obtain wireless access as before.
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The authorization cache

The authorization cache is written in Java so as to take advantage of Sameer Ajmani’s

JSDSI library [53]. The term “cache” is perhaps something of a misnomer, because at

present it provides not just certificate storage, but all the SPKI verification logic needed

by the Greenpass RADIUS server and client tools. It exposes three public methods over

XML-RPC:

• getSubjectStatus()receives a user’s public key fingerprint, and returns the user’s cur-

rent status—unauthorized, authorized guest, or authorized delegator—according to

the cache’s current contents.

• getCertChain()receives a user’s fingerprint and, if a certificate chain for that user

exists in the cache, returns it.

• There are two (overloaded) versions ofaddCertChain(). The first receives a delega-

tor’s certificate chain and a freshly-signed certificate for a guest. It concatenates the

two certificate chains to create a new certificate chain for the guest, then checks the

validity of the resulting chain by using JSDSI to compose each certificate/signature

pair of the chain in order. If the resulting proof sequence propagates Wi-Fi access

from the local SOA to the guest, then the cache verifies the signatures on the chain

and, if successful, stores the certificate chain (along with whether the subject in ques-

tion can delegate further) in an internal data structure. The second version ofadd-

CertChain()does the same, but receives only a single, complete certificate chain.

The delegator Web app uses the first version to authorize a new user after a delegator

creates a SPKI certificate; the front page uses the second version to re-authorize a

user whose certificate chain has expired from the cache.
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The most important thing that cookie-based authorization adds to Greenpass is the abil-

ity for users to re-authorize themselves by pushing certificate chains to our authorization

cache. (This will prove most useful in a decentralized setting with multiple access points,

RADIUS servers, and authorization caches; see Section 5.3 for further discussion.) Fig-

ure 3.5 illustrates the re-authorization process, which takes place as follows:

1. A user whose certificate chain is not in the authorization cache visits the Greenpass

front page. His Web browser automatically presents his public key fingerprint (hash)

and certificate chain to the Web server as HTTP cookies.

2. The front page Web app, using the user’s fingerprint as his identity, queries the au-

thorization cache to find out what his status is; it returns the status code UNAUTHO-

RIZED.

3. The front page Web app, noticing that the user has presented a certificate chain

in an HTTP cookie, responds by sending his certificate chain to the authorization

cache, which validates the chain and, if successful, returns the status code AUTHO-

RIZED. (Actually, the status code also contains the user’s role—delegator or guest—

depending on whether his certificate contains the SPKI(propagate)flag.)

The front page then informs the user that he has been re-authorized. Once a user’s certificate

chain is in the authorization cache, the Greenpass RADIUS server will allow that user onto

our unrestricted VLAN after using EAP-TLS to find his public key value.

One problem not sufficiently addressed by our HTTP-based authorization is that of

roaming clients; see Section 5.3 for further discussion.
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Figure 3.5: If a user has a valid SPKI certificate chain stored in his Web browser, but that chain is
not in the authorization cache, then he can visit the Greenpass front page to instantlyre-authorize
himself. The process takes place as follows. (1) The user visits the Greenpass front page; his Web
browser automatically presents his public key fingerprint (hash) and certificate chain to the Web
server as HTTP cookies. (2) The front page Web app, using the user’s fingerprint as his identity,
queries the authorization cache to find out what his status is; since it does not contain his certificate
chain, it returns the status code UNAUTHORIZED. (3) The front page Web app, noticing that
the user has presented a certificate chain in an HTTP cookie, responds by sending his certificate
chain to the authorization cache, which validates the chain and, if successful, returns the status code
AUTHORIZED.
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3.5 Summary

The client tools described in this section are accessible to both delegators and guests via

our Greenpass Web applications. These tools enable a guest and a delegator to carry out

the following steps:

• A guest can obtain a temporary key pair and X.509 certificate, if he needs them, from

ourdummy CAusing standard browser-based PKI enrollment functionality.

• A guest can thenintroducehis public key—contained in his existing X.509 certificate

or a temporary one—to ourintroduction cache.

• After a guest introduces himself, the Web application he is connected to displays a

visual fingerprintof his public key that a delegator can use to verify his identity. He

then waits patiently for his delegator to finish issuing a new certificate to him.

• Our Web applications allow a delegator to retrieve her guest’s public key value from

the introduction cache.

• The Greenpassdelegation applet, written in Java, displays the visual fingerprint of

the public key she has retrieved so she can compare it to her intended guest’s actual

public key value. (Other hash comparison methods could be added.) It also per-

forms the cryptographic operations necessary to sign a new SPKI certificate with the

delegator’s private key.

• The Web application server appends the guest’s new certificate to the delegator’s

existing certificate chain in order to form a complete chain from the local source-of-

authority to the guest’s public key. It then places the new chain in anauthorization

cachewhere (1) the guest can pick it up and (2) the Greenpass RADIUS server can
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“see” the new credential and grant the guest full access to the wireless network the

next time he associates to an access point.

• Finally, the Greenpass Web applications can store a guest’s credentials directly in his

Web browser as an HTTP cookie. This improvement enables “push” authorization of

a sort: even if the guest’s certificate chain expires from the authorization cache, the

Greenpass Web applications can retrieve it from this cookie, process it, and mark the

guest as re-authorized.

We have tested our client tools and the Greenpass RADIUS server as described in Pow-

ell’s pilot report [87]. The client tools do, in fact, allow a complete delegation process at

present, and the RADIUS server interprets credentials from the authorization cache as ex-

pected: it lets guests with untrusted X.509 certificates, but valid SPKI credentials, onto our

unrestricted Wi-Fi network.

Two of the biggest weaknesses of our test setup were as follows:

• Guests must tell their wireless clients to connect to a different SSID before gaining

access to our unrestricted VLAN, as discussed in Section 2.4.4. The final page of the

guest Web app includes a note to this effect.

• Our test setup includes only one access point, RADIUS server, Web server and au-

thorization cache, so we cannot test the full potential of “push” authorization via

HTTP cookies. We have, however, tested re-authorization by flushing the authoriza-

tion cache of all existing credentials.

Chapter 5 discusses future work related to Greenpass, beginning with a discussion of

existing weaknesses in the client tools presented here and suggestions for improvements.

Section 5.3 is of particular note, as it describes an example architecture where “push”

authorization via HTTP cookies should have a positive impact on scalability.

73



Chapter 4

Related work

This chapter describes work related to Greenpass and the client tools just described. Sec-

tion 4.1 describes a number of existing solutions that provide access control to Wi-Fi net-

works along with guest/visitor access of some form, and also cites two sources that have

suggested, but not implemented, delegation-based solutions; Section 4.2 discusses a num-

ber of other SPKI/SDSI-based research projects, including some that implement access

control to resources other than a Wi-Fi network; Section 4.3 compares and contrasts SPKI

with a number of competing authorization certificate formats; and finally, Section 4.4 dis-

cusses work related to the problem of public key introduction without a trusted third party,

including other visual hashing work.

4.1 Wi-Fi guest access

Many corporations, research groups, and open-source projects recognize the need to offer

hassle-free wireless connectivity to guests. This section discusses a number of existing

or proposed solutions to the problem and compares them to Greenpass. Most of these

solutions provide a different form of “guest access” than Greenpass: guests are usually
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allowed in without authentication but given access only to an Internet gateway. Greenpass,

on the other hand, can restrict access even to the Internet—and can give users access to

internal network resources once they are authorized.

4.1.1 Captive portals

Captive portalslet users authenticate to a Wi-Fi network using only their Web browsers.

Several commercial vendors sell captive portal solutions to Wi-Fi hotspots such as cafés,

bookstores, and airports. Additionally, members of grassroots community network projects

have created a number of open-source captive portal implementations; such groups believe

that some form of user authentication and monitoring are needed both to protect their open

networks from abuse (see Shand [96] for a discussion of the risks), and in some cases to

provide greater access privileges to members or founders.

The NoCat Community Wireless Project [70] maintainsNoCatAuth, a popular set of

open-source captive portal tools whose operation is well-documented and fairly represen-

tative of captive portals in general. Their toolkit combines two core components: a wireless

gateway (NoCatGW) that provides access to the Internet or other resources, and an authen-

tication service (NoCatAuth) that tells the gateway what filtering rules to apply to which

clients. A typical captive portal session might look something like this:1

1. A client requests and immediately receives a DHCP lease.

2. The gateway redirects the client’s HTTP requests to the authentication service, which

displays a secure (HTTPS) login Web page asking for username and password, or

perhaps some other form of authentication.

3. Upon successful login, the authentication service sends the gateway a signed message

1Parts of this list are quoted directly from the NoCat unofficial RFC [71].
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telling it the client’s login, current MAC address, and authentication status (“yea” or

“nay”).

4. The gateway modifies its firewall rules to reflect the user’s new status. In No-

CatAuth’s particular model, “co-op” or “priority” users obtain a higher privilege level

than unauthenticated (“public”) users.

5. The client must periodically re-authenticate. NoCatAuth opens a small side win-

dow in the user’s Web browser that periodically refreshes the login page in order to

provide automatic re-authentication.

NoCat can be used to enforce fairly complex restrictions and separation of user classes, or

simply to make users agree to a terms-of-use license before obtaining full network access.

NoCat and other captive portals share a number of features with Greenpass, such as a

Web-based registration service and an authentication/authorization service that tells some

other entity (a RADIUS server in Greenpass, a gateway in NoCat) whether a given user

should be granted access. The captive portal method of access control—by MAC address—

does not provide the same level of security as 802.1x, however, nor does it provide client-

to-AP encryption, which can help protect clients’ traffic from eavesdroppers. More impor-

tantly, existing captive portals do not offer anything analogous to SPKI delegation, instead

requiring administrators to create new user accounts manually. Some NoCat setups offer

guest access to an Internet gateway—perhaps with limited bandwidth or access to only

some ports—in “public” mode without authentication, but Greenpass aims to have guests

authenticate and go through an authorization procedure before obtaininganyaccess to ei-

ther the local network or an Internet gateway.

The PersonalTelco Web site offers an extensive list of both open-source and proprietary

captive portal implementations [84].
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4.1.2 802.1x-based solutions

Quite a few corporations provide large-scale 802.11 packages to enterprises and universi-

ties, and some are beginning to offer 802.1x authentication for increased security, along

with basic access for guests. Most of these commercial systems are variations on the fol-

lowing theme:

• Guests do not need to authenticate to obtain access to an Internet gateway, but do

remain outside a firewall that protects the organization’s internal network.

• Local users must authenticate, usually via 802.1x or a VPN connection, in order to

obtain access to internal resources.

This section describes two commercial solutions, from Nomadix and Bluesocket, as ex-

amples of typical commercial WLAN security systems that provide guest access via varia-

tions on the above approach. It also describes a fairly novel guest-access solution used by

SURFnet, the Netherlands’ national network for higher education and research.

Nomadix

Nomadix sells their Nomadix Service Engine (NSE) software package to various providers

of public-access Wi-Fi networks, and also sells a line of its own wireless gateway devices

based on NSE. Of their various advertised applications, Enterprise Guest Access shares

many common goals with Greenpass: according to a Nomadix whitepaper [72], its stated

goal is to let enterprises “provide easy, hassle-free Internet access to people visiting their

offices, without decreasing the security of their own Local Area Network.” It appears

that Nomadix’s solution to guest access is to place open, guest-accessible access points

in designated “Hot Zones” such as lobbies and meeting rooms, keeping all traffic from

these APs outside the enterprise firewall. Nomadix supports 802.1x authentication in their
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other products, but it is unclear from the whitepaper whether local users can obtain internal

access by authenticating via 802.1x to APs otherwise set aside for for guests.

Bluesocket

Bluesocket’s enterprise Wi-Fi configuration with guest access appears very similar to No-

madix’s. Their various whitepapers [12, 11] (or, as they call them, “bluepapers”) make it

clear that they support 802.1x authentication for internal users, but their FAQ Web page [10]

also mentions an HTML-based login page for guests, suggesting a captive portal approach.

Bluesocket appears to support a number of guest access options, including requiring them

to enter their email addresses to log in, or supplying temporary account numbers to guests

via pre-paid scratch cards. Bluesocket’s gateways can also place guests in a configurable

“walled garden” to allow them access only to certain sites (one whitepaper suggests that

businesses might want to block guest access to competitors’ Web sites).

SURFnet

SURFnet, the Netherlands’ national computer network for higher education and research,

offers a fairly interesting approach to guest access viaRADIUS proxying, which they de-

scribe on a Web page [101] and in a presentation they have made available online [102].

SURFnet allows wireless users to authenticate via 802.1x using any of a number of EAP

inner authentication handshakes, but modifies the RADIUS server to find users’ authenti-

cation and authorization materials as follows (taken from the SURFnet Web site):

Locally, all Access Points (APs) are connected to a local RADIUS server that

does the lookup of local users. When a guest arrives and tries to log on using a

different realm, for instance “john@alfa-ariss.com,” the local RADIUS server

cannot find the name in its database and forwards the authentication request to
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a central RADIUS proxy server. This server contains a table of realms, and the

addresses of the corresponding RADIUS servers. It forwards the request to the

RADIUS server at Alfa&Ariss, which looks up “John.” If John is found and his

credentials are correct, the RADIUS server tells the UTwente server (through

the proxy server) that John is known and allowed to use WLAN facilities, and

the UTwente RADIUS server tells the AP to open up for John. The AP can put

John into a Virtual LAN (VLAN) that does not allow him to access protected

UTwente resources, but only gives access to the SURFnet backbone.

SURFnet itself provides the RADIUS proxy server(s). Setting up a RADIUS proxy

that is trusted by multiple organizations is similar to setting up a bridge CA, except that

the RADIUS proxy must be online. Unlike a bridge CA, distributed RADIUS proxying

can provide authorization as well as authentication information. Compared to Greenpass,

SURFnet’s approach (or a bridge CA) has two drawbacks: first, organizations must agree

upon and trust a third party to provide user authentication materials; and second, guests

from outside the group of affiliated organizations cannot obtain access.

4.1.3 SPKI-based and related solutions

To our knowledge, Greenpass is the first working SPKI/SDSI-based solution to Wi-Fi ac-

cess control. A number of researchers, however, have proposed and partially implemented

similar solutions using either SPKI/SDSI or similar certificate formats.

Koponen et al. [56] describe a simulated system of access control to a café’s WLAN

based on SPKI delegation. In their example scenario, a cashier issues a SPKI certificate to a

paying customer granting her access to the café’s network for a predetermined time interval.

The customer both introduces her public key value and receives her new SPKI certificate

via an infrared link. When she wishes to connect to the network, she must authenticate to
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an access controller and present her SPKI certificate. Koponen et al. use XML-encoded

SPKI certificates [81] instead of S-expressions.

Koponen et al. appear to have only created a simulation of their system using Java

RMI calls, and at the time of their paper had not yet integrated their system with a Wi-

Fi network’s access control layer. They do not consider how guests are to connect to the

network without a custom handshake, nor do they suggest the use of visual hashing when

considering non-infrared introduction channels.

Nikander [69] describes an 802.1x-based system for authorization and charging in Wi-

Fi LANs, implemented using FreeBSD. At one point in his paper, Nikander suggests ex-

tending his system to support delegated authorization of sorts via KeyNote certificates [8]

(see Section 4.3.4 below): specifically, he suggests that the founders of a community Wi-Fi

network project could issue KeyNote certificates stating that any two existing members can

authorize new members. He points out, however, that this system would require custom

client software.

UPnP

The UPnP (formerly Universal Plug-and-Play) Forum [105] defines a SPKI-based solution

to guest access in home or small-office WLANs, although it does not allow delegation

in the same sense that Greenpass does. UPnP seeks to ease the configuration and use of

networked devices by defining a uniform interface of SOAP [110] actions for each device

class, and allowing users to access those actions using GUI-based software called acontrol

point.

The UPnP device security standard [26] “provides the services necessary for strong

authentication, authorization, replay prevention and privacy of UPnP SOAP actions.” When

a factory-fresh device is first powered up, its owner can use a UPnP control point called a
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security consoleto take ownership of it. The owner can then give other users permission

to access certain SOAP actions on that device by adding those users (more accurately,

their control points) to its internal access-control list (ACL). If the device does not have

sufficient storage for an ACL, however, the owner can send authorization privileges to its

users by issuing certificates. UPnP ACLs and certificates appear to use an XML-encoded

SPKI syntax, right down to the ability to issue both authorization certificates and SDSI-

style name certificates.2 According to the device security standard, devices can optionally

support delegation of privileges by non-owners.

The UPnP WLAN access point standard [108] combines with the UPnPlink authenti-

cation service[58] to provide 802.1x authentication with guest access. In the UPnP flavor

of wireless guest access, an AP contains its own, internal EAP server whose authentication

database can be manipulated via a UPnP control point. Suppose Alice has permission (via

the device security model discussed above) to manipulate this authentication database, and

Bob visits her home and requests wireless access for his own device. Alice can grant him

access as follows:

• Bob connects to the AP via 802.1x, using a standard EAP method: perhaps EAP-

TLS, or perhaps a password-based EAP method such as Cisco’s LEAP [18]. Bob

sends both his EAP identity (a username that EAP always requires, even with EAP-

TLS) and a credential (such as an X.509 certificate or password).

• The AP’s internal EAP server notes that Bob is an unrecognized user and adds Bob’s

EAP identity, attempted authentication type, and credential to an entry in its internal

database. It marks this entry as “pending.”

• The EAP server notifies Alice (via her control point) that a new user is trying to

2Carl Ellison, the primary creator of SPKI, has been involved in UPnP, as evidenced by his work on

UPnP’s device security standard and itssecurity ceremonies[27].
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enroll.

• Alice decides whether or not to accept the new user. If Bob’s credential was a pass-

word or similar shared secret, then Alice must enter the actual shared secret she and

Bob have agreed upon. If Bob’s credential was an X.509 certificate, then she must

verify his public key fingerprint.

The UPnP approach resembles Greenpass in a number of ways:

• Local users can authorize new users (or new devices with different credentials) to

access the network.

• Authorizing a new user involves making sure his credentials (public key or shared

secret) match the credentials the intended user really has.

• Most importantly, it appears that users can authenticate using their existing creden-

tials rather than obtaining new credentials from a local authority. Guests who use

passwords will probably not want to take advantage of this capability: it requires

giving their existing passwords to the local user. It appears, however, that guests

could use existing EAP-TLS certificates.3

The UPnP approach, however, also differs in a few important aspects:

• SPKI is used to control who may modify the AP’s authentication database, not to

control who may access the network itself. To do the latter requires either modify-

ing the access-control handshake, or separating the authentication channel from the

authorization channel (as we have done in Greenpass).

3This capability is fortunate, since the UPnP Forum has yet to describe an easy administrative interface

for certification authorities.
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• Since local users control authorization directly at the access point and guests carry

only authentication (not authorization) credentials, the UPnP approach does not scale

to university- or enterprise-scale environments with many access points.4 To scale, a

guest access solution must provide a way for guests to carry credentials and “push”

them to the appropriate access controller.

• It is not clear whether any existing access point implements the UPnP link authenti-

cation service.

As with most UPnP services, the link authentication service appears to be aimed at home

or small-business users. It is most appropriate for granting temporary access to guests in

one’s home or for permanently adding new devices to a small, protected WLAN.

4.2 SPKI/SDSI

Although SPKI/SDSI is not as popular as X.509, a considerable number of researchers

have built prototype systems that use SPKI/SDSI to handle authorization scenarios that

X.509 name certificates cannot. This section describes several that have influenced our

ideas regarding Greenpass.

4.2.1 SPKI/SDSI-based access control

MIT’s Project Geronimo,5 described by Maywah [60] and Clarke [19], uses SPKI/SDSI to

control access to objects on a Web server. Geronimo includes an extension to the Apache

4Freeman et al. [36] define a UPnP interface for configuring a RADIUS server, but it does not appear to

support the same functionality as the internal EAP server described above.
5MIT’s SPKI/SDSI-based Geronimo project is not to be confused with the Apache Foundation’s own

Geronimo project, an open-source J2EE container.
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Web server that processes SPKI/SDSI ACLs in directory-specific.htaccessfiles, only al-

lowing principals listed in such an ACL to connect to the directory to which it applies. (The

required SPKI/SDSI verification code is built-in to this Apache module as well.) On the

client side, a custom Netscape plugin handles challenges for SPKI/SDSI authorization by

building and returning the necessary certificate chain; this plugin also signs a challenge text

to authenticate the user.

A number of researchers have designed trust- or credential-management systems for ac-

cess control based on SPKI/SDSI. Eronen and Nikander [33] describe several SPKI/SDSI-

based enhancements to both authorization and authentication in Jini, a Java-based dis-

tributed computing environment. Their enhancements include the following:

• Jini services can challenge users for SPKI authorization credentials before granting

them access. This approach allows delegation-based access control to arbitrary Jini

services.

• Jini users can authenticate the services to which they connect.

• Jini services are typically accessed viaproxies, downloaded Java bytecode objects.

Users can authenticate a proxy—i.e., they can make sure it actually represents the

service it says it does.

• Finally, users can delegate permissions to individual applications on their devices.

When an application needs to use a proxy to access a remote service, it delegates its

own permission to a temporary key and passes a handle to that key to the proxy. In

this way, the proxy obtains the user’s permission to access a particular service.

Eronen and Nikander use TLS for authentication of Jini clients and servers alongside

SPKI/SDSI for authorization, much as Greenpass combines SPKI authorization with EAP-

TLS authentication of wireless clients.
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Canovas and Gomez [15] describe a distributed credential management system that uses

SPKI/SDSI name certificates and authorization certificates. The system contains naming

authorities (NAs) and authorization authorities (AAs) from which entities can request name

and authorization certificates, including certificates that permit the entity to make requests

of further NAs and RAs. The system takes advantage of both name certificates that define

groups (i.e., roles) and authorization certificates that grant permissions to either groups or

individual entities.6

Finally, here at Dartmouth College, Howell and Kotz have explored both formal se-

mantics for SPKI [48] and end-to-end authorization using SPKI [49]. In the latter, Howell

and Kotz describe a number of access-control applications built using their SPKI-based

Snowflakeauthorization architecture, including a protected Web server similar in concept

to MIT’s Project Geronimo (see above). Additionally, in theSPADEproject, Nazareth [66]

and Nazareth and Smith [67] have investigated how to define attribute release policies for

the Shibboleth federated administration system [97] using SPKI/SDSI.

4.3 Other authorization and delegation systems

Various researchers and working groups have produced other authorization certificate for-

mats that compete with SPKI/SDSI. Each format has its own set of advantages and disad-

vantages; to truly compete with SPKI/SDSI for our purposes, however, a certificate format

must at least provide delegated authorization.

6This paragraph is adapted from Goffee, Kim, Smith et al. [42].
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4.3.1 X.509 attribute certificates

The IETF’s PKIX working group has published an RFC [34] that defines an X.509attribute

certificate(AC) standard. Attribute certificates are related to X.509 name certificates; an

AC, however, includes no public key for itsholder (i.e., subject), but instead binds an

attribute to it. As mentioned in Section 2.3.1, an attribute may contain nearly anything

relevant to the relying application; X.509 attributes must conform to X.509’s ASN.1 syntax

and its OIDs (object identifiers), however, so they are less readable than SPKI tags. The

motivation behind separate attribute certificates is that a user’s name certificate may be

valid for a long time, whereas his attributes and permissions might change quickly. An

X.509 attribute certificate can identify its holder by distinguished name, by the name of the

issuer of his name certificate and its serial number according to that CA, by the hash of the

holder’s public key, or by the hash of the holder’s identity certificate.

The primary reason we chose SPKI/SDSI over X.509 attribute certificates for Green-

pass is the latter’s current lack of support for delegation. While the attribute certificate RFC

recognizes that AC chains could be used for delegation, it does not recommend doing so

at this time, citing the complexity of processing such chains. In particular, the RFC pro-

vides no standard way to intersect attributes in the way that SPKI tags can be intersected.

We suspect that a well-designed standard for delegation-friendly attributes could provide

essentially the same functionality as SPKI/SDSI (albeit with a heavier-weight syntax); we

chose SPKI/SDSI because it already meets our needs. Additionally, as mentioned in Sec-

tion 2.4.3, the EAP-TLS handshake cannot transmit attribute certificates, so had we chosen

them, guests still would have needed to carry and present them via HTTP cookies or some

other out-of-band means.

The PKIX working group has also released an Internet Draft that proposes two WLAN-

related extensions to X.509 [47]. Specifically, their draft specifies the following:

86



• Two newKeyPurposeIdvalues to be used in theExtendedKeyUsagefield of X.509

name certificates. The two new values specify that a certificate may be used for EAP

authentication over a PPP link or for EAP authentication over a LAN (EAPOL),

respectively.

• A certificate extension that specifies to which SSIDs, in a wireless LAN setting, a

given certificate can be used to authenticate. This extension allows a user’s 802.1x

client to automatically choose the correct certificate with which to authenticate to a

given access point, based on the latter’s SSID. The user may still need to choose

a certificate manually if he/she authenticates to multiple access points that rely on

different CAs, but happen to have the same SSID.

The draft also specifies an attribute certificate attribute that serves the same purpose as the

SSID extension.

These X.509 WLAN extensionscouldbe interpreted as authorization fields. A certifi-

cate with the appropriate combination of these extensions might be construed as saying,

e.g., “the subject is authorized by the issuer to connect to the AP with SSID ‘Foobar3’.”

4.3.2 X.509 proxy certificates

Welch et al. [109] describe aproxy certificateformat that allows one entity to delegate

some subset of its privileges to another entity (Tuecke, Welch et al. have recently published

a PKIX draft profile of proxy certificates [104] as well). Proxy certificates were originally

designed for use in the Globus Project’s [40] Grid computing architecture, where, for ex-

ample, long-running processes often need to inherit some of a user’s permissions in order

to access needed resources. Proxy certificates can also support many of the same actions as

SPKI delegation, such as person-to-person delegation, or delegation from a user’s master

public key (with highly-secure private key) to a short-term key.
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A proxy certificate conforms to the same format as a standard X.509 name certificate,

with a few exceptions:

• The issuer of a proxy certificate need not be a CA; it might be anend entity, i.e., the

holder of a standard, non-CA X.509 certificate or even the holder of another proxy

certificate.

• To create the subject name of a proxy certificate, the hash of the subject’s public

key is appended to the issuer’s distinguished name as arelative distinguished name

(RDN) component.

• A proxy certificate includes aproxy certificate information(PCI) extension that de-

fines what subset of the issuer’s privileges should be conveyed to the subject. Instead

of defining a new syntax expressing delegation policies, the PCI extension allows the

issuer to include a statement from one of several existing policy languages.

Proxy certificates resemble X.509 certificates so closely that some authentication li-

braries may be able to process chains of mixed X.509 and proxy certificates, with two

caveats. First, the library must not reject proxy certificates simply because they are issued

by end entities instead of CAs. Second, Welch et al. point out that their initial implementa-

tion does not use complex policies in the proxy certificates’ PCI fields, but merely a special

policy type that conveys all the issuer’s rights to the subject. Only a modified security

library could correctly process chains of proxy certificates that contain complex policies.

4.3.3 PERMIS

ThePERMISproject defines aPrivilege Management Infrastructure(PMI) that uses arole-

based access control(RBAC) system based on a combination of X.509 attribute certificates

88



and an XML-based policy language. Roles provide a simple way to define sets of permis-

sions for broad classes of users. PERMIS even supportshierarchical RBAC, where superior

roles can inherit the attributes of their subordinate roles. Role hierarchies are defined in the

root PERMIS policy for a particular domain, while the attributes of a particular role are

assigned usingrole specificationACs placed in an LDAP [114] entry for that role.Role

assignmentACs, in turn, assign roles to users. PERMIS supports delegation (an AC can

include an integer control on delegation depth): a user with a particular role assignment

AC can assign that role, or a subordinate role, to another user. Although ACs of PERMIS

users are stored in an LDAP directory, it appears that PERMIS could easily be adapted to a

model where users “push” their role assignment ACs to access controllers.

4.3.4 KeyNote

KeyNote[8] and its predecessor,PolicyMaker[9], provide decentralized trust management

via signed policy assertions, which are essentially equivalent to authorization certificates.

A KeyNote assertion delegates authority from anauthorizerto one or morelicensees; as

with SPKI, both the authorizer and the licensee may be identified by their public key values.

An application that relies on KeyNote must obtain assertions (via either a “push” or “pull”

method) and pass them to the KeyNote compliance checker along with a set of name/value

pairs called anaction attribute set. The action attribute set describes the access request

a user is making of the application. KeyNote assertions contain a set of conditions; the

compliance checker ensures that the action attributes passed by the application match these

conditions.

The KeyNote RFC [8] specifies that compliance checking involves building a directed

graph from a root assertion called “POLICY” (presumably, this assertion is an unsigned

statement internal to the application) to at least one of the principals that requested an
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action. Therefore, KeyNote allows delegation chains just as SPKI does. Note, however,

that KeyNote does not include a way to limit whether a principal may further delegate its

permissions; the application has to decide which principals it will ultimately trust as direct

issuers of assertions. The KeyNote RFC does not give any specific guidelines as to how

implementations should process certificate chains.

4.3.5 XML-based authorization

Researchers have proposed a number of XML-based approaches to authorization problems.

Three fairly popular XML-based languages are SAML, XACML, and XrML.

SAML(Security Assertion Markup Language) [73, 76] was designed largely to support

single sign-on(SSO) between Web applications run by different parties. Using SAML,

Alice can send Bob an assertion that contains statements about a client, Carla, that Alice

and Bob have in common. SAML assertions can contain three types of statement:

• anauthentication statementtells Bob that Alice authenticated Carla and also includes

details about the time and method of the authentication;

• anattribute statementtells Bob that Carla has some attribute, such as “Gold” mem-

bership status, in Alice’s domain.

• anauthorization statementtells Bob what Carla is allowed to do.

SAML also defines ways for Alice (theasserting party) to send Bob (therelying party)

her assertion. Either Alice can send Bob her assertion behind the scenes using a SOAP-

based protocol (a “pull” model), or Alice can send Carla’s Web browser a digitally-signed

assertion that it later sends to Bob via an HTTP POST request (a “push” model). SAML

suggests the use of HTTPS to protect assertions used in the “pull” model from tampering

90



or replay attacks. (Presumably, Carla’s communication with either Alice or Bob must be

secured via HTTPS as well, or an attacker could obtain her session token.)

XACML(eXtensible Access Control Markup Language) [74, 77, 100] is an XML-based

language for defining access-control policies. Of the policy languages and certificate for-

mats already discussed, it is most similar to KeyNote, but XACML is more verbose (a draw-

back7) and contains more constructs with predefined semantics (an advantage). XACML’s

typical use model involves apolicy enforcement point(PEP) receiving an access request

from some user and sending an XACML description of that request to to apolicy decision

point (PDP). The PDP compares the request to a policy that is structured as follows:

• Each policy contains a number ofrules.

• Each rule has atarget that specifies whatresources, subjects, andactionsmust be

involved in a request for that rule to apply to it. Each resource, subject, or action is

defined by a number ofattributes.

• Each rule also contains acondition that, if met, causes the rule’seffect(permit or

deny) to be fired and combined with the effect of other rules in that particular policy.

Each XACML policy specifies acombining algorithmthat the PDP should use to combine

the results of the enclosed rules. Policies themselves can also have targets, and can be

further combined intopolicy sets(which themselves can have targets). A PDP determines

whether a particular rule is applicable (based on its target) to the request described by

the PEP, then determines whether that rule’s condition is true or false and fires the rule’s

desired effect if its condition is true. Inapplicable rules return a specialNotApplicable

7Being XML-based, however, XACML probably lends itself more readily to the construction of an au-

tomated policy editing tool. On the other hand, raw KeyNote assertions are compact, highly readable, and

highly writable, none of which are distinctions any XML-based language can claim.
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value. XACML policies can also be distributed, in that one policy may refer to a different

policy stored in a different location and possibly created by a different entity.

XACML does not define a protocol or assertion format for transporting requests, poli-

cies, and/or responses among a PEP, PDP and other entities. The XACML technical com-

mittee of OASIS has, therefore, released a draft profile for using XACML policies within

SAML 2.0 assertions [79].8 This proposal augments XACML policies with the following

features:

• a way to identify the assertion issuer,

• a way to add a validity period to the assertion, and

• a way to verify an issuer’s digital signature on an assertion.

The resulting signed XACML/SAML assertion could be described as an XACML “cer-

tificate,” since it has features analogous to those found in other authorization certificate

formats.

XrML (eXtensible Rights Markup Language) [113] might be considered an agreeable

middle ground between SPKI/SDSI’s simplicity and XACML/SAML’s flexibility and stan-

dardization. XrML’s basic authorization carrier is thelicense, which is analogous to an

authorization certificate. An XrML license is structured as follows:

• A license contains anissuerand one or moregrants.

• A grant in turn contains four fields which the XrML Technical Overview [22] de-

scribes in the following words (italics mine):

– theprincipal to whom the grant is issued,

8Note that I describe SAML 1.1 above because documentation for it is more complete; SAML 2.0 remains

a draft at this point.
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– theright that the grant conveys to the specified principal,

– theresourceagainst which the specified principal can exercise or carry out this

right, and

– theconditionthat must be met before the right can be exercised.

XrML licenses can identify principals by public key (as in SPKI), by other authentication

credentials, or by various properties including X.509 subject name. Like a certificate, a

license may be digitally signed by its issuer.

Neither SAML nor XACML currently supports delegation, although both technical

committees appear to be considering it for future versions.9 XrML supports delegation

in much the same way as SPKI: a grant may contain aDelegationControlelement that,

when present, permits the holder of that grant to delegate his right to the given resource

to other principals. Unlike SPKI, XrML can specify that a licensee may delegate to only

those principals that appear in a particular set of principals.

Custom delegation semantics could certainly be added to SAML or XACML; Navarro

et al. [65] discuss how to implement a constrained-delegation model in SAML, XACML,

and XrML.

4.4 Introduction and visual hashing

Anytime one entity, Alice, needs to authorize an entity from a different domain, Bob, to

do something, the problem of key introduction might arise. As discussed in Section 3.2.3,

Alice needs a secure way to find out Bob’s public value and either authorize him directly

via that value or bind a meaningful name to his key. This section describes other research

9See the SAML Version 2.0 Scope and Work Items document [75] and the XACML delegation use-cases

document [78] for details.
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that explores the introduction problem, as well as other work related to the visual hashing

approach we chose for Greenpass.

Ellison and Dohrmann [28] describe a situation in which a group leader wants to

invite—i.e., add—a number of principals to a collaborative group, where membership im-

plies access to resources intended only for that group. (The leader adds principals to his

group by issuing SDSI name certificates; see Section 5.4.2 for a discussion of named SDSI

groups.) The group in question might be completely ad-hoc in nature, including people

from different organizations and people from across departmental boundaries within the

same organization: therefore, the group leader cannot rely on a pre-existing naming or au-

thorization infrastructure. As a result, the group leader must securely establish the identity

of each invitee by learning his or her public key value. Ellison and Dohrmann choose visual

hashing as a quick way for the leader to compare the public key value he receives for each

invitee to the value actually stored on that person’s machine. In Ellison and Dohrmann’s

approach, each of the two devices (the leader’s and the invitee’s) displays a short sequence

of coloredflags in synchronization with the other device; the leader must make sure that

each flag displayed on his device matches the one shown on the invitee’s device.

Balfanz et al. [6] describe a scenario in which a user wishes to print a sensitive doc-

ument from his wireless device to a public printer in an airport. The user would like to

authenticate the printer (so he doesn’t beam his document to the wrong entity) and send his

document to it via an encrypted channel (so nobody can eavesdrop on the transmission); he

does not, however, already have a public key value for the printer, nor do he and the printer

share an existing PKI that would allow him to authenticate it by name. Instead, Balfanz et

al. propose apre-authenticationstep in which the user’s device learns the printer’s public

key (or a hash thereof) via alocation-limited channelsuch as an infrared link. By Bal-

fanz et al.’s definition, “location-limited channels have the property that human operators
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can precisely control which devices are communicating with each other”; e.g., it would be

quite apparent if an intruder tried to introduce his own key, rather than the printer’s, to the

user by holding his own device between the user’s device and the printer during infrared

pre-authentication. Pre-authentication, therefore, allows the user to bind a public key value

to a particular printer he has identified as the one to which he wants to print. Balfanz et al.

also discuss group pre-authentication and key-exchange protocols, which might be useful

if, e.g., a group of people in a conference room wish to share confidential resources among

themselves.

Perrig and Song [83] propose visual hashing as a possible solution for a number of

problems in computer security. They argue that many security weaknesses result from

failure to account for human factors, and focus their paper on two human weaknesses in

particular:

• humans are slow and unreliable when comparing meaningless strings (such as hash

values), and

• humans have difficulty remembering strong passwords.

Perrig and Song go on to formalize some properties that a visual hash algorithm must

exhibit to be useful for security purposes, and suggest Andrej Bauer’sRandom Art[7]

algorithm as an implementation worth considering. They briefly explore the use of visual

hashing for CA root key validation (a specific case of public-key fingerprint comparison),

and also suggest that a user could be authenticated by being asked to recognize aportfolio

of visual hash images that only he knows. Dhamija and Perrig [24] expand on the portfolio

concept in theirDéjà Vuprototype, which uses Random Art images for user authentication.

Due to the ad-hoc nature of PGP introductions, a number of programmers have created

alternative methods of fingerprint comparison for this purpose; all these systems transform
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hexadecimal hash values into forms that humans can compare more easily. One such pro-

gram is Visprint [43, 52], which we incorporated into Greenpass for guest key verification

(see Section 3.2.3). Another is Raph Levien’s PGP Snowflake generator [57]. Additionally,

the PGPfone package [85] provides a procedure for transforming hash values into lists of

words for the purpose of key comparison. This approach is designed to ease the comparison

of hash values via telephone or other voice channels.

96



Chapter 5

Future work

Researchers and product developers have much exploration left to do in the field of de-

centralized, delegated authorization, SPKI-based or otherwise. I hope that Greenpass, by

beginning to solve the real and widely-recognized problem of Wi-Fi guest access, might

spur other researchers to investigate the field of delegated authorization and might influence

various bodies to consider what standards are needed to better support it.

This chapter investigates a number of ideas for future research and development. First,

it investigates current limitations of the Greenpass client tools: i.e., system aspects that

must be changed or tested before Greenpass becomes a fully secure, scalable system for

controlling Wi-Fi access. Section 5.1 discusses security improvements to the design of

my client tools, Section 5.2 discusses the usability quirks we encountered in our pilot and

suggests solutions, and Section 5.3 discusses how Greenpass could be decentralized on

a network with multiple access points and, possibly, multiple RADIUS servers. Second,

this chapter suggest ideas for future research: Section 5.4 explains how SPKI/SDSI’s more

advanced features could enable interesting new approaches to Wi-Fi authorization, Sec-

tion 5.5 discusses how SPKI/SDSI might be used to control access to resources other than

the network itself, and Section 5.6 suggests a “bake-off” between competing authorization
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certificate formats and policy languages and offers my own speculations on the results of

such an exercise.

5.1 Security considerations

Because my own security experience is limited to the Master’s research described in this

thesis, and because we intend our current Greenpass tools to be a demonstration of SPKI-

based delegation rather than a fully deployable system, there are several potential security

issues that should not be overlooked.

The XML-RPC communication between the Greenpass RADIUS server and my autho-

rization cache needs to be secured in some manner. Otherwise, an intruder could inject

a fake AUTHORIZED response code from the authorization cache’sgetSubjectStatus()

method, causing the RADIUS server to accept a user without valid SPKI credentials. For

our pilot, the authorization cache ran on the same machine as the RADIUS server, so that

the two communicated via a socket on the 127.0.0.1 loopback interface. Loopback secu-

rity, however, may be dependent on the networking stack that hosts the two components, or

even on the host machine’s particular networking hardware.

A more general solution would simply secure communication between the RADIUS

server and authorization cache using a shared secret or via an authenticated HTTPS session

(it is more important for the RADIUS server to authenticate the authorization cache than

vice versa). Flanagan [35] proposes a system that allows two XML-RPC parties to au-

thenticate each other using a shared secret, establish a session key, and add MACs to their

ensuing messages using that session key. (Flanagan’s proposal would provide message

integrity only, not encryption.) I was unable to find an implementation of Flanagan’s proto-

col, however. Time constraints also prevented me from learning how to tunnel XML-RPC

sessions over an HTTPS connection.
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Another solution would simply co-locate the authorization cache and the Greenpass

RADIUS server without using socket-based communication. This approach could probably

be most quickly implemented by wrapping a SPKI/SDSI library with a custom shared

library with the same functionality as the current authorization cache, then linking the

RADIUS server code with this custom library. One could use a C-based SPKI/SDSI library

such as MIT’s SDSI 2.0 [91] or Intel’s CDSA [16] or wrap JSDSI—which may be the most

active SPKI/SDSI library project—in a C interface using JNI and perhaps gcj [41].

Another consideration is the security of the Greenpass Web applications. A true du-

plication of Ellison and Dohrmann’s [28] public-key introduction process would have both

the guest’s and the delegator’s machines calculate and display a visual hash of the guest’s

public key. In our approach, the delegator’s machine calculates a visual hash on its own

since the delegation applet runs client-side, but our Web app generates a visual hash and

sends itover the networkto the guest’s Web browser. If an adversary can get the guest’s

Web browser to display the adversary’s own visual hash rather than the guest’s, a delegator

might delegate to the wrong person. (This issue arises not just with visual hashing, but

in any approach where the device that displays or plays a hash representation is not the

device that calculates it.) The entire guest introduction process takes place via HTTPS, but

there may still be loopholes. A full investigation into these issues would need to consider

specifics of the HTTP and HTTPS protocols; Web browsers do not appear to use SSL’s

built-in session support reliably and consistently enough to depend on it alone for session

authentication.

Our Web apps contain a number of what appear at first glance to be security loop-

holes that do not actually lead to an adversary gaining access to the Wi-Fi network. The

Greenpass front page identifies users via public key hashes stored in theirgreenpasshash

cookies. It could use HTTPS client authentication to ensure that their actual public keys
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match the value of this cookie, but it does not. This loophole would allow, for example,

somebody to modify his cookie store to contain the public key hash of an authorized dele-

gator whose credentials are already in the authorization cache. The front page would then

allow the impostor to access the delegation Web app and even run the applet, but he would

be stopped when the applet asked for a keystore containing the correct private key for the

identity with which the impostor tried to delegate. This “attack” could never create a valid

signature without the real delegator’s private key.

Another general security issue we need to consider is how vulnerable the Greenpass

components are to denial-of-service (DoS) attacks. Other component-to-component com-

munications, besides the critical channel between authorization cache and RADIUS server,

might need to be secured to avoid an adversary from mounting a DoS attack by, e.g., per-

forming large numbers of fake introductions or trying to introduce large numbers of invalid

certificates to the authorization cache.

A great deal of research remains to be done on the security of visual hashes, particularly

regarding which algorithms generate the most secure images. A “collision” of visual hashes

might occur when two public keys result in images that look “equal” to a delegator, even

if the underlying MD5 hashes are not equal. To discover how easily an intruder could

generate a public key value with a visual hash that might fool a delegator, researchers might

need to perform studies of human visual perception in addition to mathematical analyses

of visual hash algorithms. Human factors must be considered when analyzing the security

of any hash-comparison method, even plain hexadecimal key fingerprints.

Two general security issues we have not considered in Greenpass are accounting and

revocation. Section 5.4 discusses how SDSI names might aid in accounting. Revocation

might not be necessary if guest credentials are short-lived enough, but using short-lived

certificates might reduce the flexibility and usability of Greenpass for situations other than
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simple guest access.

Finally, the security of Greenpass is dependent on the correctness of the SPKI/SDSI

libraries (and other libraries) on which it depends. This factor should not be overlooked, as

the JSDSI library [53] is still under development.

5.2 Usability issues

Although SPKI authorization is conceptually quite simple, we have tried to support it using

OS and browser functionality designed for X.509 authentication PKIs. This approach adds

complexity. We could probably eliminate many of these issues by carefully testing our

system and engineering around the various quirks that can arise. There are other elements

of the client tools’ interface that could be improved as well.

Some of the issues that arise are as follows:

• When a guest connects to our Web applications, he must establish an HTTPS session.

His browser asks if he would like to trust our Web server. The solution here is simple:

get any production Greenpass Web server certified by a widely-trusted CA such as

Thawte or Verisign.

• The guest’s HTTPS session also requires client authentication; depending on the

guest’s configuration settings, his browser may ask for permission to use his private

key or, on some platforms, for a password to unlock his private key. This step may

be alarming to some users; we need a way to warn users that it might happen and

carefully explain that our tools are not trying to do anything malicious.1

1Many client certificates reveal information, such as name and email address, that the client might like

to keep secret. We always offer guests the option of obtaining a temporary certificate, but we might want to

include a clear warning before even establishing an HTTPS session with client authentication.
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• Delegators need an easier way to look up guests than by four-digit subject ID. My

initial implementation of the delegation Web app allowed a delegator to search the

distinguished-name fields of recently-introduced X.509 certificates, but guests may

not always know their own X.500 distinguished names. One approach might be to

let the guest supply a name or nickname to our Web app via an HTML form, which

could display the common name from his X.509 certificate as an initial suggestion.

Whatever initial identification scheme is used, however, should not produce a false

sense of security by implying in any way that the identifier is authoritative.

• It is redundant for a delegator to choose which of the waiting guests matching her

query she wants to delegate toandchoose that guest’s visual fingerprint from among

several. The delegation applet could instead merge her query results into the pool

of random fingerprints it shows her. We would need to consider how to handle the

unlikely scenario where her query returns a large number of matches.

• Delegators currently must export PKCS#12 files from their OS or browser keystores

in order for the delegation applet to access their private keys. This step adds extra te-

dium to the delegation process, as it requires delegators who may not be experienced

in PKI tools to navigate some of the more obscure configuration dialogs offered by

their OS or browser platforms. It also will not work for delegators who keep their pri-

vate keys on smart cards or USB tokens. The JavaKeystoreWrapperclass included

in the delegation applet, however, could wrap native OS or browser keystores using

JNI (Java Native Interface) and a native stub library for each platform. Implementing

this functionality could clear up a major source of complexity.

• Java runtime environments maintain their own keystores that are not necessarily in-

tegrated with OS or browser keystores, and mark various principals as trusted code
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signers using Java-specific tools. These quirks call for a thorough study of the be-

havior of various Java versions; such a study could lead to clear and consistent in-

structions for installing Java trust anchors. This improvement would smooth the

Greenpass experience for delegators, particularly non-local delegators.

• Users still need to configure their EAP-TLS clients outside our client tools. We could

create a Web page with detailed instructions on how to do this for each platform, or

train some delegators to assist guests with the configuration process.

• Many guests might want to obtain access via telephone rather than through the face-

to-face interaction required by visual hashing. PGPfone’s [85] word lists, mentioned

in Section 4.4, provide a way to compare hash values over a voice channel. Other

hash-comparison methods are also worth investigating.

• Finally, the Greenpass client tools could be extended to include more flexible man-

agement options, such as the ability to store multiple SPKI certificate chains and the

ability for delegators to keep track of to whom they have issued certificates.

5.3 Decentralization

The primary reason we decided to place authorization certificates in HTTP cookies was

to provide truly decentralized authorization. Using this approach, a client can present a

chain of authorization certificates to an entity who has never seen the client before and who

can’t communicate directly with the certificate’s issuer. This “push” model of authorization

takes full advantage of certificates, especially delegated certificates. At present, however,

our experimental Greenpass setup uses only a single access point, RADIUS server, and

authorization cache.
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Further decentralization might be accomplished in many ways, but two representative

examples follow:

• Have multiple access points depend on a single RADIUS server and authorization

cache. This approach seems to work today with fairly large client populations using

standard 802.1x authentication, but cannot scale forever. This approach suggests a

single Web application server as well.

• Place several groups of Greenpass tools throughout a network, where each group con-

sists of a single RADIUS server, Web application server, and authorization cache,

but several access points. Each group would have its own restricted VLAN. Ev-

ery group would, however, trust the same source-of-authority for SPKI certificates:

guests could gain access within one group, then “push” the resulting credentials to

gain access to other groups. Note that a guest and his delegator would need to connect

to the same group to carry out the delegation process.

The last scenario might benefit from, e.g., a Linux-based software package that provides

a turnkey Web application server, RADIUS server, authorization cache, and perhaps even

gateway software to maintain the restricted local VLANs. In general, Greenpass would

benefit from a stripped-down RADIUS server that supports only the very basic EAP-TLS

handshake and authorization check we require.2

Distributed scenarios such as those described above would require careful tuning of

DNS or routing entries on each local restricted VLAN. Web browsers present cookies only

to the same domain name or domain name suffix that originally set them (the cookie issuer

must specify if its cookies should be sent to servers with the same suffix; otherwise they are

2Rather than an entire authentication database, the Greenpass RADIUS server onlyneedsto store the

public key of the local CA and the public key of the local source-of-authority.
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sent only to the one original server). The obvious solution is to ensure that all Greenpass

Web application servers on a network share the same DNS suffix.

Roaming

Because users can carry their wireless devices with them while moving about an organiza-

tion’s premises, their devices must constantly go through a cycle of disassociating from one

AP and associating to another. This process is calledroaming. Roaming poses a particular

problem when the device must also carry out authentication and/or authorization steps. It

is essential to consider how Greenpass will impact roaming clients.

Greenpass might impact roaming clients differently depending on which of the two

decentralized scenarios listed above is employed. Consider the scenario with a single RA-

DIUS server and set of Greenpass client tools first. Edney and Arbaugh [25] discuss 802.1x

preauthentication, which allows a device to detect an access point that is coming into range

and authenticate to it over thewirednetwork without disassociating from the current AP. A

preauthenticated device will already have a set of keys in place with which to communicate

with the new AP before it drops its connection to the old AP. APs that support preauthen-

tication and rely on a RADIUS server should, in theory, be blind to any extra authorization

checks (such as ours) that the RADIUS server performs. The RADIUS server, however,

might be bombarded with requests from roaming clients who preauthenticate to a new AP

every several seconds. It is also not clear which APs and client devices, if any, support

preauthentication at present.

The second scenario—in which a network contains several groups of Greenpass tools—

poses a different problem. It is not feasible for a client to carry out an HTTP-based reau-

thorization step (as described in Section 3.4.4) when roaming between groups. The best

solution might be to implement a behind-the-scenes “hand-off” of authorization material
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between adjacent groups. Implementing a hand-off between APs themselves might allevi-

ate the load on the single RADIUS server in the first scenario, as well.

As Wi-Fi protocols improve, the IEEE and Wi-Fi Alliance will likely develop their own

method of AP-to-AP hand-offs of authentication material. SAML (see Section 4.3.5) might

provide an appropriate mechanism for analogous hand-offs between groups of Greenpass

client tools, if needed.

5.4 Advanced SPKI/SDSI features

At present, Greenpass uses direct key-to-key SPKI delegation using only a single tag,

(greenpass-pilot-auth). SPKI/SDSI provides a number of advanced features that could al-

low organizations and their members to express more subtle authorizations than “access/no

access.” These features might, however, require modifications to the SPKI libraries used,

and would also require careful consideration of how to retrieve all the certificates necessary

to check a particular user’s permissions.

5.4.1 Advanced SPKI tags

SPKI tags are simply arbitrary S-expressions to be interpreted by the relying application.

As described in the SPKI theory and structure documents [32, 31], tags can include a

number of positions, each of which restricts the access granted by the certificate. As a

simple example, a tag(wlan-access)that grants wireless access might be restricted to only

offer access to an SSID called “ssid42” by changing it to(wlan-access ssid42). (Access

points and the RADIUS server would be responsible for enforcing such restrictions.) Any

position in a SPKI tag can be set to all possible values of that position (a wildcard), a range

of values, a specific set or list of values, or the set of all values with a certain prefix. A
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SPKI library with full tag intersection capability would allow delegators to propagate all or

just a subset of their own privileges to other users.

Two straightforward and clearly useful applications of tags are as follows:

• Users could be given various “classes” of access by providing not just two, but several

VLANs and specifying which one(s) a guest should have access to using the SPKI

tag in his certificate. Guests might be given access only to an Internet gateway, for

example,3 or given access to resources of one department or another, or to a VLAN

that includes digital library materials.

• Users could be given SPKI-based credentials to resources other than the wireless

network, as described in Section 5.5 below.

5.4.2 SDSI names

SDSI provides a syntax forlocal names—i.e., names that are meaningful to a particular

SPKI/SDSI principal. A brief overview of SDSI names follows:

• Each principal has its own namespace where names meaningful to it are bound to

other principals.

• The holder of any key〈key〉1 can issue a SDSI name certificate that binds some

name—e.g.,Alice—to some principal〈key〉2, but only in〈key〉1’s namespace. Such

a certificate means “the holder of〈key〉1 calls the holder of〈key〉2 Alice.”

• SDSI names can be chained. If the person I call “Alice” in my own namespace just

introduced me to somebody she calls “Bob,” I can immediately refer to that person

3One of Greenpass’s stated goals is to give authorized guests access tointernal resources, but advanced

tags would allow us to specifywhich, if any, internal resources.
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using the SDSI S-expression(name Alice Bob), which means “Alice’s Bob.” (My

computer will need Alice’s name certificate for Bob in order to make sense of this

name by binding it to a public key.)

• SDSI names can be chained indefinitely: I could, for example, refer to “a friend of a

friend of a neighbor’s drycleaner” as(name Alice Bob Carla Dan).4

• SDSI names can be “globalized” by prefixing a chain of names with a public key

value: i.e., anybody can use(name〈key〉1 Alice) to refer to the person that〈key〉1’s

owner calls “Alice.”

• Finally, SDSI does not require a one-to-one mapping of names to keyholders. My

neighbor, whom I call Alice, could bind the namedrycleanersin her namespace to

the public keys of several drycleaners she knows. I could then, e.g., issue a SPKI

certificate with subject(name Alice drycleaners) to grant some privilege to all of

Alice’s drycleaners.

In their most obvious use, SDSI names could make for a more convenient delegation

tool. If we wish to provide a more advanced “delegation management tool” that lets delega-

tors keep track of whom they have issued what permissions to, as mentioned in Section 5.2

above, it would make sense to let them specify their guests by name. Specifically, delega-

tion would involve an extra (but very easy) naming step, as follows:

1. the delegator chooses a name for her guest that is meaningful to her;

2. the delegator issues a SDSI certificate to her guest that binds the name she has chosen

to his public key (but only inher namespace, not some CA’s); and finally,

4This example assumes, of course, that I call my neighbor Alice, she calls her drycleaner Bob, he calls

his friend Carla, and she calls her friend Dan.
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3. the delegator issues a SPKI authorization certificate to her guest, using the SDSI

name she has assigned him in the(subject)field instead of his public key,

If a delegator looks at an authorization certificate she issued months ago, she will probably

remember who she issued it to if the subject is a SDSI name that is specifically meaningful

to her.

An even more interesting use of SDSI names is as follows. Since SDSI names may be

used for groups rather than individuals, and SDSI names are relative, they can naturally ex-

press a concept that might best be called “relative roles.” This use could allow a convenient

form of role-based access control to a Wi-Fi network, while still offering delegated guest

access. Whereas standard role-based access control systems use simple role names such as

“guests,” SDSI can express relative roles such as “Alice’s guests,” “Bob’s guests,” or even

“any professor’s guests,” and a source-of-authority can then grant privileges to these roles,

as in the following example:

1. A university’s SPKI source-of-authority, whose public key we will call〈soa〉, issues

SDSI name certificates to several trusted delegators to a group in its namespace called

delegators. Alice, Bob, Carla, and Dan, for example, would all receive the SDSI

name(name〈soa〉 delegators). At present, however, nobody in this group holds any

privilege to do anything.

2. Now, the university’s SOA issues a SPKI authorization certificate that grants Wi-Fi

access to its own(name delegators guests). The SOA states, in effect, “if somebody

I call a delegatorchooses to call you aguest, then access points or their RADIUS

servers should grant you Wi-Fi access.”

3. A visitor shows up on campus and asks Alice for wireless access; she grants his

request by adding him to her localguestsgroup. (She could still assign a meaningful,
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individual name to him, then add that name to her group of guests.)

The approach just described does not offer any limit on delegation depth5 and would be-

come awkward if used to delegate access to too many types of resource. It might be worth

investigating, however, a combination of SDSI relative roles with PERMIS’s role-based

access control policies (which might be able to enforce delegation depth limits).

A problem with all these naming schemes is that guests are no longer granted autho-

rization via a single chain of certificates: they must present an appropriate combination

of name and authorization certificates. Research would need be done into how to provide

guests with the needed certificates or provide a reliable lookup protocol for the relying

parties.

5.4.3 Threshold subjects

A SPKI threshold subjectspecifies that each ofn subjects should receive 1/kth of a particu-

lar authorization. At leastk of then designated subjects must simultaneously try to perform

an action to be granted access, or at leastk of then designated subjects must delegate to the

same principal for that principal’s certificate chain to prove valid. Threshold subjects can

increase the security of delegation: for example, by specifying SDSI group or role names as

then members of a threshold subject, a university might require that three delegators from

different roles (e.g., student, professor, department chair) must all delegate Wi-Fi access

to a guest. Threshold subjects, however, complicate the process of issuing, obtaining, and

processing certificate chains.

5Nothing stops Alice from issuing a certificate that adds(name guests guests)to her group(name guests).
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5.5 SPKI-based access control to other resources

If our client tools were extended to provide sufficient generality, we could provide SPKI-

based access control to resources other than the network itself. In some cases, of course,

this is infeasible because the resources being accessed use their own handshake methods

that do not provide the authentication and authorization required for SPKI. In general,

however, any system that uses public-key-based authentication could be modified to check

a SPKI authorization cache for credentials regarding that public key. For example:

• Many, many resources today are accessed via the Web. Web servers already sup-

port public-key based authentication via SSL/TLS, and Greenpass provides a way to

present authorization credentials to a Web server as well (HTTP cookies). Someone

could, therefore, design a Web server that provides SPKI-based access control along

the lines of MIT’s Geronimo project [19, 60] (see Section 4.2.1), but without the spe-

cial client plugin. A client who tried to access a SPKI-protected resource on such a

Web server would be redirected to a page where a delegator could grant him access.

• SSH or SFTP could possibly be modified to control access to different directories

using SPKI.6

• Appendix A describes a short experiment I completed that adapts Greenpass to VPN

access control.

• Finally, if IPSEC [50] were able to accept SPKI authorization certificates, we could

control access to basically any IP-accessible resource that supports IPSEC.

SPKI-based access control to Web resources would have the most far-reaching implica-

tions.
6Niels Möller appears to be integrating a SPKI/SDSI library into hislshsecure shell implementation [62],

but it is not clear how it will be used.
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5.6 Authorization language comparison

The various systems described in Section 4.3 might all—some of them with extensions—

provide alternative ways to support decentralized, delegated authorization. A “bake-off”

study of these systems would prove insightful, and would likely take one of the following

two forms:

• several people could look for as many real-world authorization scenarios as possible

and figure out how easily they can be expressed in each of the competing languages,

or

• a few people could implement a Greenpass system that supports several types of

authorization, then see how each system works out as people try to use it in the real

world.7

An approach that might eliminate the need for out-of-band authorization would use

X.509 certificates as both authenticationand authorization credentials. Delegators would

issue guests new X.509 certificates—probably with an anonymous name, or one derived

directly from the subject’s public key—containing extensions that define the privileges

being granted. The extensions themselves might contain policy statements in SPKI or

another language. This approach has a few drawbacks:

• The X.509 certificate format, especially its ASN.1 encoding, is more complex than

SPKI/SDSI.
7The difficulties with this latter approach probably would be (1) linking authorization materials to authen-

tication materials, since each authorization system implicitly assumes certain types of identification, and (2)

creating editors for each of the competing languages. The latter step is probably too difficult to attempt until

a single target authorization language is settled upon.
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• The relying party would need to process these X.509 certificates differently than

standard X.509 certificates. In particular, it would have to mostly ignore name fields

and make sure the certificates form an unbroken chain from public key to public key.

It would also need to interpret the authorization extensions properly.

• Keystores on guest machines might refuse to import and/or store highly non-standard

certificates.

• Users would obtain new X.509 certificates with each new privilege granted, and

would have to manage all these extra certificates. Cookies automatically get pre-

sented only to the entity that issued them.

Proxy certificates [104, 109] (see Section 4.3.2) provide much of the needed function-

ality. The naming semantics of proxy certificates, are entirely the opposite of SDSI’s:

whereas SDSI defines names relative to public keys, proxy certificates define public keys

relative to names. Proxy certificates are better suited for identifying a temporary key pair

acting on behalf of a user than for identifying people that a user has authorized to do some-

thing. This consideration would cause problems with the accounting system I suggest in

Section 5.7 below.

5.7 Other thoughts

Finally, this section offers some Greenpass-related ideas that do not fit elsewhere.

Accounting

It is important for an organization to log the activities of users on its network, a process

calledaccounting. Greenpass poses new accounting challenges for two reasons: guests
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will be using the network, and they may not have definitive names. SDSI might allow a

distributed accounting method for Greenpass, which would work as follows:

• An organization sets up a “root” accounting entity.

• The root accounting entity issues SPKI certificates that grant some other entities the

authorization to act on its behalf. These subordinate accounting entities could be

spread throughout an organization’s network to prevent bottlenecks.

• Access points, RADIUS servers, or whatever other entities enforce access policies

require users to present both an authorization certificate chain from a delegatorand

a certificate from an accounting entity stating that it has seen and recorded that par-

ticular certificate chain. It could assert this by issuing a certificate with the SPKI

(object-hash)of the guest’s certificate chain as its subject.

The accounting entity that records a certificate chain could, perhaps, make a note of the

SDSI name attached to its subject. The organization would keep on record the public key

values of all its local members, so it could trace any delegation chain back to a local user.

The organization could hold its local members accountable not so much for the actions

of their guests, as for assigning meaningful SDSI names to their guests. Officials who

were investigating an incident involving a guest could show his delegator the certificate

that granted him access, and because it contained a meaningful SDSI name, the delegator

could identify the actual individual responsible.8

Virus protection

In a similar manner, guests (or even all users) could be required to obtain credentials from

an automated entity that assures their machines do not contain viruses.

8I am not a lawyer, however.
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A SPKI tag editor

If SPKI controls access to numerous resources, users will need a convenient interface with

which to manage their own privileges, as well as assign names to other principals and

delegate to them. A usable SPKI “tag editor” might include the following features:

• A “drag-and-drop” authorization editor, which would allow a user to drag his

currently-held privileges to other users to whom he has assigned SDSI names.

• A description language for SPKI tags: this could tell a user what the various tags in

an application-specific SPKI tag actually mean so he could restrict delegated priv-

ileges appropriately. Perhaps the tag editor could even read a tag description and

automatically produce a GUI dialog box for editing that particular tag.

Shared-secret authentication

Most computer users understand shared-secret authentication systems, such as passwords,

more intuitively than public-key-based systems. Support for password-based EAP methods

such as Cisco’s LEAP [18] seems more widely supported at present, especially by older

systems, than EAP-TLS. Password-based systems are often easier to configure on the client

side than PKI-based systems. A Greenpass variation based on password authentication

might work as follows:

• A guest connects, without authentication, to a restricted VLAN and connects to a

Greenpass Web app.

• The Web app sets up an HTTPS-protected session with the guest and assigns him

some random session token (this is a standard method of session protection in many

online applications). It then associates some other random number with the guest’s
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session internally and displays a visual hash of this second token9 on the guest’s

screen.

• A delegator connects to the Greenpass Web server and vouches for the guest with

that particular visual hash. The Web application lets her do this only after checking

the credentials that give her permission to delegate.

• The guest’s Web app generates and assigns him a temporary username and pass-

word10 that he types (or copies and pastes) into his Wi-Fi configuration software.

• The access point or RADIUS server would then, somehow, learn that it should grant

access to the user with that particular username/password pair.

It is difficult to see how such a system would ever allow PKI-like delegation chains,11

but it could provide an alternative, and perhaps easier, way for delegators to grant Wi-Fi

access to guests who need no further features. It is also not immediately clear how such a

system would provide decentralized authorization: the guest might have to carry an HTTP

cookie that proves his authorization to use that particular credential, and it is not clear how

to distribute such a credential securely among an arbitrarily large population of relying

parties. On the other hand, if a roaming system were already in place in which adjacent

access points “hand off” information about a client as he moves between them, as discussed

in Section 5.3 above, then they could hand off the guest’s credentials at the same time.

9Using the first number both to authenticate the guest’s session and as the source for a visual hash might

reveal too much information about it, compromising the guest’s session.
10Wireless clients typically remember passwords, so there is no reason to use a potentially weak human-

generated password.
11Crispo, Popescu, and Tanenbaum [23] discuss ways to providesomePKI-like functionality using sym-

metric keys.
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Non-compatible devices

Some devices will not be compatible with Greenpass. Particular problem areas include

• devices without WPA’s 802.1x support, and

• devices without Web browsers.

A captive portal could be used to control access for such devices—devices without Web

browsers might have to “authenticate” using a neighboring machine—but it would negate

the security of 802.1x access control if it provided the same level of privilege. An orga-

nization could provide one or more limited access levels—implemented using VLANs, as

discussed in Section 5.4.1 above—for specialized devices. In particular, it might be possi-

ble to support certain devices such as VoIP phones by providing them only the resources

needed for their particular usage models. An organization could also provide captive por-

tal access to the Internet, possibly with limited bandwidth and port access, to guests with

older, non-WPA operating systems.
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Chapter 6

Summary

This thesis has described a set of Web-based client tools that allow users to obtain guest

access to a Wi-Fi network from a previously-authorized user of that network, rather than

from a central network administrator. These tools form part of Dartmouth’sGreenpass

project. Kim [55] describes the other major component of Greenpass: a RADIUS server

that authenticates users with an industry-standard EAP-TLS handshake, but adds an addi-

tional authorization step that lets guests with valid SPKI credentials connect even if they do

not have trusted X.509 certificates. Because we use EAP-TLS for wireless authentication

and standard SSL/TLS for Web-based key introduction, our system does not require any

custom software on the guest’s machine.

Chapter 1 described our motivation for Greenpass. The physical layer of a Wi-Fi net-

work is accessible to the extreme.1 Organizations that deploy Wi-Fi networks have to

consider two seemingly conflicting demands that this accessibility creates:

• On the one hand, an open physical layer requires strong, cryptography-based privacy

1My advisor, using a special antenna, is able to connect to our campus Wi-Fi network from his home that

approximately 1.5 miles away, albeit uphill.
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and access-control measures at the link layer or higher. Otherwise, organizations

might expose sensitive information or find that their networks are being abused.

• On the other hand, Wi-Fi’s open physical layer allows an organization to offer

cheap—often free—Internet connectivity to visitors. People are beginning to ex-

pect this convenience wherever they go, and it seems a shame to deny such universal

connectivity to honest, invited visitors because of security concerns about uninvited

outsiders.

Current Wi-Fi security standards provide only authentication and access control, however.

They typically offer centralized authorization mechanisms such as ACLs that are inconve-

nient to modify every time a new guest wants access. Public-key cryptography can decen-

tralize authorization to reflect real organizational structures and person-to-person relation-

ships such as the host/guest relationship that typically arises when a person is invited to a

large university or enterprise.

Chapter 2 described background material related to my work on the Greenpass client

tools. Newer Wi-Fi security standards allow Wi-Fi users to authenticate viaEAP-TLS,

which, like the TLS handshake offered in Web browsers, makes use of X.509 public key

certificates. An X.509 PKI by itself, however, does not support guest access easily because

it relies on global names: most organizations operate their own, independent certification

authorities (CAs), leaving us with no means to authenticate guests from arbitrary home

organizations. Instead, Chapter 2 suggests the use ofSPKI/SDSI, a very lightweight PKI

system that can issue authorizations directly to the owner of a particular public key without

relying on an intermediate naming step. SPKI/SDSI also allowsdelegation: a local Wi-Fi

user can issue a signed SPKI certificate to a guest that states, in essence, “I said it’s okay

for this keyholder to obtain Wi-Fi access.” Kim’s Greenpass RADIUS server [55], if it does

not recognize the issuer of an X.509 certificate, will extract the public key value from that
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certificate and then look in anauthorization cachefor a SPKI certificate chain regarding

the owner of that key.

Chapter 3 described the client tools I have contributed to the Greenpass project to enable

delegation from a host to a guest. Some of the most salient questions answered in that

chapter are as follows:

• How can someone delegate to a user who does not hold a trusted name certificate?

SPKI/SDSI solves part of the problem: it offers certificates that can make statements

about the owner of a public key instead of an entity with a certain name. We solve

the other part of the problem usingvisual hashesas suggested by Perrig and Song

[83] and Ellison and Dorhmann [28]. A delegator can painlessly compare the visual

hash of the key she is about to delegate to with the visual hash of her indented guest’s

key, as displayed on his device’s screen.

• How does the delegation tool access the delegator’s private key?After considering

a stand-alone application, we settled on signeddelegation applet. A signed Java

applet can, if the user marks its signer as trusted, access the user’s local filesystem.

We use this capability to load the delegator’s private key from a password-protected

PKCS#12 file, although future versions could support native keystores. Visual fin-

gerprint verification is built into the applet, so its user will always verify who she

is about to delegate to before the applet signs a certificate. Other hash-comparison

methods would suffice as well.

• How do the delegator and guest communicate without custom software?A set of

Greenpass Web applicationsuse the ubiquitous Web browser to provide a cross-

platform front end for our client tools and a communication path between guest and

delegator. The guest introduction Web app learns the guest’s public key via SSL/TLS
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client authentication, and can generate new key pairs for guests who need them using

standard browser-based PKI enrollment functionality.

• How does a guest “push” his authorization credentials to the Greenpass RADIUS

server if EAP-TLS only supports authentication?He doesn’t. The Greenpass Web

apps add his SPKI certificate chain to an HTTP cookie, which his Web browser can

later “push” to the Greenpass Web apps (or a clone of them on a different subnet) to

prove his authorization. The guest pushes his authorization credentials via a channel

that is parallel to, rather than encapsulated in, the EAP-TLS handshake.

Chapter 4 described work related to Greenpass. To our knowledge, ours is the first

working solution to Wi-Fi guest access that uses SPKI/SDSI delegation for authorization,

though other authors have suggested the idea. A number of researchers have implemented

SPKI/SDSI-based or similar access control to resources other than a Wi-Fi network. Also,

there are a number of policy languages (such as XACML) and certificate or assertion for-

mats (including SAML, KeyNote, XrML, X.509 attribute certificates, and X.509 proxy

certificates) that compete with SPKI/SDSI.

Chapter 5 suggested a number of future research and development ideas related to

Greenpass. The client tools still contain a number of problems, but I point them out and

suggest possible solutions for them. I also point out that roaming is an essential area of

research for any Wi-Fi authentication or authorization system. Delegated authorization is

still a largely unexplored field, especially in terms of implemented applications, and offers

many opportunities for exciting research. The most fertile grounds for research are prob-

ably implementing delegated access control to a variety of resources—particularly Web-

based resources—and comparing competing authorization languages and approaches to

find one that allows straightforward expression of the policies that people actually need. I

expect that the most successful approach might involve static policies at access points or
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other access controllers combined with verysimple, delegated, dynamic assertions made

by human end users and automated attribute authorities. PERMIS’s combination of hierar-

chical, delegated roles with a policy language already tends in this direction, but appears to

be encumbered by X.509-based naming. Interesting future research might investigate other

combinations: e.g., SPKI assertions or SDSI relative name/group certificates combined

with more static XACML policies.
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Appendix A

Greenpass and VPNs

Section 5.5 suggested a number of additional resources, besides a Wi-Fi network, that might

benefit from delegated, SPKI/SDSI-based access control. One class of resources we believe

would benefit arevirtual private networks(VPNs), specifically remote-access VPNs. This

chapter briefly describes an experiment we have set up that uses our existing Greenpass

pilot setup to provide delegated guest access to a network through aVPN concentrator.

A.1 Definitions

The VPN Consortium [107] distributes a whitepaper [106] that describes various VPN tech-

nologies. By their definition, a VPN is “a private data network that makes use of the public

telecommunication infrastructure, maintaining privacy through the use of a tunneling pro-

tocol and security procedures.” The VPN Consortium considers the following two types of

VPN to be entirely distinct:

• Trusted VPNsare provided to a company by its communications provider. The com-

pany trusts the provider to maintain the privacy of the circuits over which its infor-
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mation travels.

• Secure VPNsuse a cryptographic tunnel to maintain the privacy and integrity of data

as it travels from one section of a company’s network, across an untrusted network

(usually the Internet), and into another section of the company’s network.

The rest of this chapter applies only to secure VPNs.

VPNs could protect a network’s communications in more than one way:

• Gateway-to-gateway encryption. Two or more gateways might communicate via a

VPN tunnel, unifying two or more small, private LANs into a single network via the

Internet without compromising their original privacy.

• Remote-access VPNsprovide a private, authenticated tunnel from a single client de-

vice into a network that otherwise would not be accessible from the Internet. The

client device usually establishes a tunnel to a gateway device on the edge of the tar-

get network. This secure gateway device is sometimes called aVPN concentrator.

Several protocols can interact in forming a VPN. Some of those more commonly en-

countered are as follows:

• L2TP(Layer 2 Tunneling Protocol) [103] can tunnel PPP (Point-to-Point Protocol, as

traditionally used for modem connections to the Internet) over an IP network. L2TP

inherits PPP authentication mechanisms such as EAP.

• PPTP(Point-to-Point Tunneling Protocol) is a proprietary Microsoft protocol similar

to L2TP.

• IPSEC (IP Security) [50] is a protocol—or rather, a set of protocols—that allows

two IP endpoints to authenticate one another, negotiate a shared session key, then
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integrity-protect and/or encrypt their ensuing communications using that session key.

IPSEC is rather similar in concept to SSL/TLS (see Section 2.2), but IPSEC protects

IP packets themselves, whereas SSL/TLS adds a security layer on top of a TCP/IP

socket-based connection.

Many remote-access VPN clients offer L2TP-over-IPSEC [82] as a VPN protocol option:

in this case, an L2TP tunnel is established over an IPSEC tunnel. L2TP provides mutual

authentication of the endpoints at the beginning of the session while IPSEC protects the

privacy and integrity of ensuing L2TP traffic.

A number of vendors offerSSL VPNs; the debate is still open as to whether these are true

VPNs. SSL VPNs allows users to log in to their home organizations’ networks from remote

machines using a only a Web browser as their “VPN client,” authenticating and tunneling

their communication over SSL (or TLS). Given the strength and high interoperability of

the SSLv3 and TLS protocols, this approach may well be superior to traditional VPNs for

providing easy remote access to Web applications along with strong authentication and

privacy mechanisms. SSL VPNs, however, do not serve non-HTTP applications, such as

email, telnet, and secure shell, particularly well. Vendors have to invent ad-hoc approaches

such as Java-based email and shell programs, or ActiveX- or Java-based proxy servers and

port forwarders that run on the client machine and redirect traffic for the duration of the

SSL VPN session.

A.2 Motivation

A remote-access VPN allows users to work remotely while still shielding their employer’s

internal network resources from outside attack. Dartmouth currently uses VPNs to control

access to certain highly sensitive resources; delegation (not necessarily guest access) might
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provide useful semantics for accessing such resources. In addition, VPNs could provide

an alternative method of Wi-Fi access control. Rather than authenticating using 802.1x, a

user could connect to an access point that provides access only to a restricted VLAN, then

obtain full access to the local network through a VPN concentrator. In either of these cases,

we need to enhance the VPN’s access control with Greenpass’s SPKI-based authorization

in order to allow delegated access.

We also wish to demonstrate that we could augmentany client-server system that

uses public-key-based authentication to include a SPKI-based authorization check, with-

out modifying the existing client handshake. All that is needed is to modify the server to

extract the public key of any unknown user and use it to check an authorization cache for

SPKI certificates regarding that key, just as the Greenpass RADIUS server does.

A.3 Experiment

We added a Cisco VPN 3000-series Concentrator [17] to the test network described in

Kim’s thesis [55]. We configured it as follows:

• We connected the concentrator’s “public” interface—the one that would normally

expose the concentrator to the Internet so that remote clients can connect to it—to

the restricted VLAN that unauthenticated and unauthorized users connect to, and

gave it an IP address on that VLAN.

• We connected the concentrator’s “private” interface—the one that the VPN concen-

trator typically uses to give legitimate users access to the private network it protects—

to a subnet on the full, unrestricted Dartmouth network.

• We tested this configuration with simple password-based authentication to confirm

that it worked.
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• We then configured the VPN concentrator to provide PPTP and L2TP/IPSEC access,

both using the authentication typeEAP Proxy. We configured the VPN concentrator

to forward EAP requests to the Greenpass RADIUS server.

Kim’s test setup already included DNS and DHCP servers running on the restricted

VLAN, so we did not need to configure these. We did have to configure the VPN con-

centrator to consult the correct Dartmouth DNS server, DHCP server, and gateway on its

“private” interface in order to give authenticated and authorized users access to the full

Dartmouth network.

A.4 Results

We tested the VPN concentrator configuration using the Microsoft VPN client on a Win-

dows XP laptop computer. We connected to laptop to the “Greenpass Test” SSID on our

test network’s access point; this SSID does not require authentication but provides access

only to the restricted VLAN. We confirmed the following:

• The client authenticated successfully to the VPN concentrator using EAP-TLS with

an X.509 certificate issued by the local Greenpass CA.

• The client didnot authenticate successfully using a temporary certificate created by

the Greenpass dummy CA.

• After going through the Greenpass delegation process using the dummy certificate

and obtaining a SPKI/SDSI chain, however, the clientwasable to authenticate and

connect to the VPN concentrator.

We confirmed that this worked using both PPTP and L2TP, although the latter provides

greater security for an established tunnel.
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One problem that we ran into was as follows. Windows XP obtains information about

DNS servers using DHCP when it first connects to our AP on the “Greenpass Test” SSID.

The restricted VLAN includes a DNS server that we use to redirect HTTP requests to the

Greenpass front page. After the VPN client establishes a connection to the VPN Concen-

trator, it obtains a second DHCP lease on the unrestricted network at the remote endpoint

of its VPN tunnel. The DNS information it obtains from this second connection, however,

does not appear to override the original DNS information, so HTTP requests still get redi-

rected to the Greenpass front page. At present, we can only work around this by manually

entering the IP addresses of the correct DNS servers.

A.5 Future work

This experiment was only a preliminary study into using VPN concentrators with Green-

pass. It was, however, surprisingly straightforward to set up preliminary guest-access ca-

pabilities simply by pointing the VPN concentrator at the existing Greenpass RADIUS

server.

Some of the questions and problems that might be considered in the future are as fol-

lows:

• How should the enormously complex range of configuration options provided by the

VPN concentrator be set up to provide a smooth user experience without the DNS

quirk we described, and without other quirks our limited testing did not reveal?

• How would our setup scale to larger networks or different network configurations? In

our experiment, we were constrained by the existing configuration of the Greenpass

test network, and other configurations might work better.
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• Do VPN clients allow a user to connect to one VPN concentrator for the local net-

work he is visiting, and then establish a second VPN tunnel to his own home organi-

zation’s network? This consideration is essential when providing guest access.

• Currently, the Microsoft VPN client is the only one that provides EAP-TLS authen-

tication. How can we offer access, particularly with certificate-based authentication,

to clients on other platforms?

• Finally, how can we provide guest access to a pure IPSEC VPN without relying on

L2TP authentication?

This last question is particularly worth considering. The L2TP-over-IPSEC RFC [82]

discusses a number of security issues that can arise when authentication is divorced from

establishment of lower-level IPSEC tunnel encryption. IPSEC’sIKE (Internet Key Ex-

change) protocol [44] supports mutual authentication based on X.509 certificates, much as

EAP-TLS does. The Cisco VPN concentrator we used supports pure IPSEC authentication

using IKE; unfortunately, the only fields of the target’s X.509 certificate it will forward

to a RADIUS server during this exchange are X.500 distinguished name fields. To carry

out a decision based on the target’s public key value, we would need to modify the VPN

concentrator software itself. Future work might involve modifying an open-source IPSEC

VPN system, such as FreeS/WAN [38] running on Linux, to carry out a SPKI-based autho-

rization check during an initial IKE certificate exchange.
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Glossary

802.11 The IEEE wireless Ethernet standard that people typically mean when they refer to

a “wireless network” or “wireless LAN” (WLAN). Informally calledWi-Fi.

802.11a/b/gAddendums to the IEEE 802.11 standard that define different physical layers

(with different broadcast spectrums and transmission speeds) for use with wireless

Ethernet.

802.11i A draft IEEE addendum to the IEEE 802.11 standard that defines new security

features.

802.1x An IEEE access-control mechanism for Ethernet networks that involves three

entities—the supplicant, the authenticator, and the authentication server—

communicating via theEAPauthentication protocol. See Section 2.1.4 for a detailed

description.

ACL (access-control list) A simple authorization mechanism that lists what entities are

allowed to access a particular resource.

ad-hoc mode An 802.11 mode in which wireless client stations communicate directly with

one another using radio waves. See alsoinfrastructure mode.

associateTo establish a connection with a wireless access point. Sometimes—e.g., if the
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AP in question uses 802.1x access control—a client station may need to carry out

an additional authentication handshake after association before the AP grants it full

network access.

attribute certificate A digitally-signed statement that binds an attribute—which could be

a privilege, age, role, or nearly anything else—to a name or a public key. Typically

refers specifically to an X.509 attribute certificate as described in RFC 3281 [34].

authentication The act of establishing an identity for some party, usually by finding out

that party’s name.

authentication server In 802.1x, the entity that ultimately processes the supplicant’s au-

thentication handshake and tells the authenticator whether to grant the supplicant

access.

authenticator In 802.1x, the entity that guards the resource the supplicant is trying to

access. The authenticator relays EAP messages between the supplicant and the au-

thentication server.

authorization In the words of Kaufman et al. [54], “permission to access a resource.”

authorization cache The Greenpass component that is responsible for receiving SPKI cre-

dentials (certificate chains), verifying them, and storing them so it can answer queries

from the Greenpass RADIUS server about what principals are authorized.

authorization certificate A digitally-signed statement that binds an authorization (i.e.,

privilege) either to a name or directly to a public key, giving the owner of that name

or public key the right to exercise the privilege.

captive portal A system of authentication and access control to a Wi-Fi network that con-

sists of two entities: (1) a gateway that filters clients based on their MAC addresses
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and gives them different levels of access based on their different privilege levels, and

(2) a Web-based authentication service that authenticates users and informs the gate-

way which users/devices should be granted what privilege levels. See Section 4.1.1

or the NoCatAuth project [70] for more information.

certification authority (CA) In X.509 and some other name-based PKIs, a specialized

entity that is responsible for verifyingname→public keybindings and issuing name

certificates that tell the rest of the world about those bindings.

certificate Used alone, often refers to aname certificate, but could also refer to anautho-

rization certificateor an attribute certificate. In general, a certificate might be defined

as a digitally-signed statement that binds two independent characteristics of an en-

tity together so that a relying party who trusts the certificate’s issuer can infer one

characteristic about the entity after learning and verifying the other.

certificate chain A sequence of certificates that conveys trust or privilege from its first

certificate’s issuer to its last certificate’s subject.

CRL (certificate revocation list) A list maintained by an entity that issues certificates list-

ing those certificates it has revoked due to loss or compromise of their subjects’ pri-

vate keys or due to a change of status on the part of the subject. A certificate issuer

typically either distributes CRLs periodically to all users of its certificates or makes

its CRL available in a location that it specifies in all its certificates.

default key mode In WEP, a mode in which all client stations talking to an AP share the

same secret key. See alsokey-mapping key mode.

delegate To grant a subset of one’s privileges to another entity or to one’s own pseudonym.
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dummy CA The component of the Greenpass client tools that issues new X.509 certifi-

cates to guests who do not already have them.

EAP (Extensible Authentication Protocol) An authentication standard defined in RFC

2284 [13] and used to authenticate PPP dialup requests and 802.1x Ethernet access

requests, among other things. EAP simply provides a general packet format that can

be used to encapsulate other authentication handshakes. See Section 2.1.4 for details.

EAP-TLS A standard defined in RFC 2716 [1], used to encapsulate the TLS authentication

and key-establishment handshake within EAP.

IETF TheInternet Engineering Task Force; see http://www.ietf.org/.

infrastructure mode An 802.11 mode in which one wireless station, called anaccess

point(AP), provides a central LAN service to one or more mobile client stations in its

vicinity. Typically, the AP also provides a connection to a larger network backbone.

Most organizations provide wireless LAN and Internet connectivity to their members

and to guests using infrastructure mode, and it is this mode that Greenpass focuses

on. See alsoad-hoc mode.

introduction The process by which one entity learns another entity’s public key in the

absence of a trusted third party. See Sections 3.2.3 and 4.4 for more information and

related work.

introduction cache The component of the Greenpass client tools that holds X.509 certifi-

cates of guests who have recently introduced themselves.

IPSEC (IP SECurity) An IETF standard that lets two IP endpoints authenticate to one an-

other and establish a shared secret for encrypting and integrity-protecting IP packets

133



they send to one another. See the IPSEC working group’s Web page [50] for further

information.

key-mapping key mode In WEP, a mode in which each client station has its own, unique

secret key that it shares with the access point. The access point has to keep a list of

which key goes with which MAC address.

KeyNote A signed assertion (or authorization certificate) language. See Section 4.3.4 or

the KeyNote RFC [8] for additional information.

keystore An OS- or browser-provided database that stores a user’s trust anchor root cer-

tificates, end-entity certificates that the user trusts, and the user’s own certificate(s)

and corresponding private key(s). See Section 2.2.5 for details.

LDAP (Lightweight Directory Access Protocol) A protocol described in

RFC 1777 [114] that provides straightforward read/write access to a hierarchi-

cal directory of X.500 names with attached attributes.

name certificate A digitally-signed statement that binds a name to a public key. A name

certificates states, in essence, “the entity namedX knows the private key correspond-

ing to the public key herein.”

PEM (Privacy Enhanced Mail) An early method of providing encryption and digital sig-

natures for email or other text messages, described in RFCs 1421–1424. It has been

superseded by S/MIME, but many utilities still use the PEM format (simple Base64

encoding with readable header and footer lines) to store X.509 certificates and other

cryptographic material in files.

PERMIS A project that providesrole-based access control(RBAC) based on a combi-

nation of X.509 attribute certificates and an XML-based policy language. See Sec-
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tion 4.3.3 for more information and references.

policy language A computer language that is geared towards specifying complex sets of

conditions under which an entity should or should not be granted access to a partic-

ular resource. XACML [74, 77] is one example.

PKC (public-key certificate) Another term for aname certificate, usually applied specif-

ically to X.509 name certificates.

PKCS#12 A file-based keystore format [93].

PKI (public-key infrastructure) According to Kaufman et al. [54], “the components nec-

essary to securely distribute public keys.”

PKIX An IETF working group that develops standards and guidelines for the use of X.509

certificates on the Internet. See their home page [86] for more information.

principal According to Kaufman et al. [54], “a completely generic term used by the secu-

rity community to include both people and computer systems. Coined because it is

more dignified thanthingy and becauseobjectandentity (which also mean thingy)

were already overused.” In SPKI/SDSI, aprincipal is the holder of a particular public

key.

propagate Used synonymously with “delegate” in SPKI. In particular, the SPKI(propa-

gate)tag, if present in a SPKI certificate along with a privilege, gives the subject of

that certificate permission to delegate the privilege to others.

proxy certificate A modified X.509 public-key certificate (PKC) that allows the holder of

a PKC (or another proxy certificate) to both (1) establish a temporary identity with

its own key pair and (2) delegate all or a subset of his privileges to that temporary
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identity. See Section 4.3.2, Welch et al. [109], or the X.509 proxy certificate draft

RFC [104] for more information.

public-key fingerprint A hash of a public key value that can be written on paper or trans-

mitted via some other trusted channel; used to ensure that a full public key value

transmitted via an untrusted network has not been modified in transit.

“pull” authentication/authorization To obtain name or authorization certificates from a

directory while authenticating a target entity or checking its access privileges.

“push” authentication/authorization To present authentication or authorization materi-

als directly to a relying party while trying to prove one’s identity to that party and/or

prove that one is authorized to access a resource it guards.

RADIUS server An authentication server that, in the words of the RADIUS RFC [89], is

“responsible for receiving user connection requests, authenticating the user, and then

returning all configuration information necessary for the client to deliver service to

the user.” In the context of 802.1x, a RADIUS server communicates with a supplicant

via an EAP tunnel set up by an authenticator.

relying party The entity that is trying to establish the identity of the other party (thetarget)

in an authentication handshake, or obtain proof that the target is permitted to access

a certain resource in an authorization handshake.

RFC (request for comments) The typical means of publication for IETF standards.

role-based access control (RBAC)An access control system where each user is assigned

a role or roles, where each role implies a certain set of access privileges. Because

there are typically far fewer roles than users, RBAC can reduce complexity by not

requiring a separate statement of access privileges for each user.
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SAML (Security Assertion Markup Language) An OASIS standard that allows one

party to send a second party various XML-based assertions about yet another party.

See Section 4.3.5 or SAML’s OASIS Web site [73] for more information.

SDSI (Simple Distributed Security Infrastructure) A PKI and name certificate format,

since merged with SPKI, whose distinguishing characteristic is its local name syntax.

See the documents listed underSPKI for more information, or see Section 5.4.2 for

a brief introduction. Pronounced “sudsy.”

source-of-authority (SOA) A principal and public key that a relying party trustsa priori

to grant authorizations to other principals. A relying party might trust a particular

SOA to grant all types of privileges, or just some. Analogous totrust anchor; the

latter is more often used to refer to a root naming authority.

SPKI (Simple Public Key Infrastructure) A PKI and authorization certificate format

whose distinguishing characteristics are (1) direct binding of privileges to public keys

and (2) delegation. See the SPKI theory RFC [32], the SPKI certificate structure draft

[31], or Section 2.3 for details. Pronounced “spooky” or “speaky.”

SSID A human-readable “network name” that helps client stations determine the AP or

group of cooperating APs to which they are associating. An AP can either broadcast

its SSID or keep it “secret,” but “secret” SSIDs do not add any security.

SSL (Secure Sockets Layer)An Internet protocol created by Netscape that enhances

TCP/IP socket-based connections with public-key-based client, server, or mutual au-

thentication, session encryption, and session integrity. SSL has been superseded by

the IETF’sTLSprotocol. See Section 2.2 for more details.

supplicant In 802.1x, the entity that attempts to gain access to some network or network
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resource.

tag The field of a SPKI certificate that defines (in an application-specific manner) the priv-

ilege being granted.

target The party to an authentication or authorization handshake that is trying to prove its

identity and/or its permission to access some resource to the party.

TKIP (Temporal Key Integrity Protocol) An enhanced encryption and integrity-

protection protocol that replaces WEP in WPA, but remains compatible with WEP

hardware. See Chapter 11 of Edney and Arbaugh [25] for an in-depth overview of

TKIP.

TLS (Transport Layer Security) An IETF-standardized version of Netscape’s SSL pro-

tocol. TLS enhances TCP/IP socket-based connections with public-key-based client,

server, or mutual authentication, session encryption, and session integrity. See Sec-

tion 2.2 for more details.

trust anchor An entity that is trusteda priori and whose public key is already known.

tuple reduction A method of intersecting SPKI, SDSI, and other certificates to form in-

creasingly simpler structures with the same semantics as the original collection of

certificates. Described in the SPKI theory RFC [32].

visual fingerprint A transformation of a public-key fingerprint into a unique image that

can be easily recognized or compared with other visual fingerprints.

visual hash Seevisual fingerprint.

VPN (virtual private network) A network that makes use of public communication chan-

nels such as the Internet, but uses cryptographic tunneling to maintain the privacy of
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its own traffic.

VPN concentrator A secure gateway device that lets clients log in and establish a crypto-

graphic tunnel to a network that otherwise would not be accessible from the Internet.

WEP (Wired Equivalent Privacy) A highly broken security standard defined in the orig-

inal IEEE 802.11 standard. It uses a shared secret between a client station and access

point. See Borisov et al. [14] or Edney and Arbaugh [25] for a discussion of its many

weaknesses.

Wi-Fi An informal name for theIEEE 802.11wireless Ethernet standard. More accu-

rate than simply “wireless,” which could also refer to non-802.11 standards such as

Bluetooth.

Wi-Fi Alliance An industry consortium of vendors of IEEE 802.11-based products. The

Wi-Fi Alliance also acts an informal standards body that defines extensions to the

IEEE 802.11 standard, such as WPA.

WPA (Wi-Fi Protected Access) A subset of 802.11i, released as a transitional standard

by the Wi-Fi Alliance, that offers enhanced security but remains compatible with

WEP hardware. It uses TKIP for encryption and session integrity and allows the use

of 802.1x for authentication and session key establishment.

X.500 distinguished name (DN)A particular name format, used to identify issuers and

subjects of X.509 certificates, that includes not just an entity’s common name but also

other distinguishing information such as organizational membership, email address,

location, etc.

X.509 name certificateThe most common name certificate format on the Internet. The

IETF’s PKIX working group [86] defines a standard profile [46] for its use. See
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Section 2.2 for details.

XACML (eXtensible Access Control Markup Language) A rather comprehensive

XML-based policy language defined by OASIS. See Section 4.3.5 or the XACML

technical committee Web site [74] for more information.

XrML (eXtensible Rights Markup Language) A policy (or authorization certificate)

language with which a provider of digital resources can grant access privileges to

its resources to other parties. See Section 4.3.5 or the XrML Web site [113] for

further information.
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