
Policy-Driven Data Dissemination for Context-Aware Applications

Guanling Chen and David Kotz
Institute of Security Technology Studies

Department of Computer Science, Dartmouth College
Hanover, NH 03755, USA

{glchen, dfk}@cs.dartmouth.edu

Abstract

Context-aware pervasive-computing applications re-
quire continuous monitoring of their physical and com-
putational environment to make appropriate adaptation
decisions in time. The data streams produced by sen-
sors, however, may overflow the queues on the dissem-
ination path. Traditional flow-control and congestion-
control policies either drop data or force the sender to
pause. When the data sender is sensing the physical
environment, however, a pause is equivalent to drop-
ping data. Instead of arbitrarily dropping data that
may contain important events, we present a policy-
driven data dissemination service named PACK, based
on an overlay-based infrastructure for efficient multi-
cast delivery. PACK enforces application-specified poli-
cies that define how to discard or summarize data flows
wherever queues overflow on the data path, notably at
the mobile hosts where applications often reside. A key
contribution of our approach is to uniformly apply the
data-stream “packing” abstraction to queue overflow
caused by network congestion, slow receivers, and tem-
porary disconnection. We present experimental results
and a detailed application study of the PACK service.

1 Introduction

Adaptive pervasive-computing applications rely on
awareness of their execution context, such as physical
location, network condition, and state of their peers.
To obtain such information, applications typically need
to continuously monitor data streams produced by dis-
tributed sensors so that they can react to events quickly.
Due to the potential large data volume, however, it is
necessary to control the data flow from sender (sensor)
to receiver (application) so that the data rate does not
exceed the receiver’s consumption rate or exceed the
network’s transmission capability. We must also sup-
port disconnected operationfor mobile clients, whether

senders or receivers.

All three situations involve queues:flow controlpre-
vents overflow of a receiver’s queue (such as by inform-
ing the sender how much more data the buffer can hold);
congestion controluses certain mechanisms to notify
the sender either explicitly or implicitly when queues
of intermediate network elements are full; disconnection
causes the queue at the sending side of the broken link
grow until the link is restored. In each case, it is neces-
sary to have a limit on the queue size because physical
memory is finite and because latency may grow unac-
ceptably large as the queue builds up.

If a queue becomes full, it must either drop the new
data (best effort) or tell the sender to pause (reliable de-
livery). UDP and TCP are transport protocols repre-
senting such approaches. From an application’s point
of view, however, the best-effort approach may lose im-
portant events and pausing a sender may incur larger la-
tency. If the sender is a sensor, asking it to pause is
equivalent to dropping data arbitrarily due to its limited
buffering capability. It makes sense, then, for the queue
to drop some data when it becomes full, but only accord-
ing to the application’s semantics.

We observe that many context-aware applications are
loss-tolerant, which means that they can adapt to occa-
sional data loss and often do not require exact data de-
livery. Many multimedia applications are loss tolerant
in nature, but we focus on non-multimedia applications
in this paper. For instance, an application that maintains
a room’s temperature for current user(s) will likely be
able to function correctly even if it misses several sensor
readings. Similarly, an ActiveMap application can adapt
to loss of location-change updates by fading the object
at its current location as a function of time since the last
update [7]. One reason these applications are able to tol-
erate data delivery loss is that they are designed to cope
with unreliable sensors, which also may lead to data loss
and inaccuracy.

In this paper, we present a data-dissemination ser-

vice, PACK, that allows applications to specify data-
reduction policies. These policies contain customized
strategies for discarding or summarizing portions of a
data stream in case of queue overflow. The summaries
of dropped data serve as a hint to the receiver about the
current queueing condition; the receiver may adapt by,
for example, choosing a different data source or using a
faster algorithm to keep up with the arriving data. Unlike
congestion control in the network layer, which makes
decisions based on opaque packets since it does not rec-
ognize the boundaries of application-level data objects,
the PACK policies work at the granularity of Applica-
tion Data Units (ADU) [4], which in this paper we call
events. Since PACK works with events that follow a
common structure, PACK can get thevaluesinside the
event object enabling a much more flexible and expres-
sive policy space for receivers.

Our PACK service presents three contributions. First,
it enables customized data-reduction policies so context-
aware applications can trade data completeness for fresh
data, low latency, and semantically meaningful data.
Second, it employs an overlay infrastructure to effi-
ciently multicast data and to support mobile data end-
points for temporary disconnection and hand-off. Fi-
nally, it provides an adaptation mechanism so receivers
may react to current queueing conditions.

The rest of the paper is organized as follows. We
present the data dissemination mechanism over the
PACK overlay in Section2. We then show the policy
specifications in Section3and our queue-reduction tech-
nique in Section4. The experimental results and appli-
cation studies are presented in Section5. Finally, we
discuss related work in Section6 and conclude in Sec-
tion 7.

2 Data dissemination

An overlay-based infrastructure gives us a fully-
distributed and self-organized system. We can build a
multicast facility with an overlay for efficient data dis-
semination even if IP multicast is not available [3]. An
application-level overlay also permits incremental de-
ployment of customized functionality, such as PACK op-
erations, without modifying networking protocol stacks
in the operating systems.

The PACK service consists of a set of PACK nodes
and some PACK clients. PACKnodesare functionally
equivalent and peer with each other to form a service
overlay using an application-level peer-to-peer routing
protocol. A PACKclient is not part of the PACK overlay,
because we expect many clients will be mobile devices
with limited capability and bandwidth. The client uses a
a library to explicitly attach to a PACK node, which acts
as theproxyfor that client.

A dataendpointon the client is either asenderor a

receiver. A sender produces a sequence ofeventscarry-
ing application data, such as sensor readings. To receive
an event stream, the receiversubscribesto some sender.
The sender client, intermediate forwarding PACK nodes,
and the receiver client form a dissemination path for that
subscription. We allow many receivers to subscribe to a
single sender, or a single receiver to subscribe to multi-
ple senders.

Conceptually there is a FIFOqueueon each host of
the path for a particular subscription, temporarily hold-
ing the events in transition. Abufferconsists of multiple
queues for multiple subscriptions (Section4). Receivers
specify a data-reduction policy (or simplypolicy) that
is deployed to their queues on any host of the path. The
policy defines how to shorten the queue when it becomes
full, by discarding and summarizing certain events ac-
cording to the applications’ needs (Section3).

Each endpoint and overlay node has a unique numeric
key randomly chosen from the same key space. The sub-
scriptions of a senderS are managed byS’s root node,
whose key is closest toS’s key among all nodes. Note
that a sender’s root is not necessarily the same node as
S’s proxy. All the overlay nodes are functionally equiv-
alent and may play several roles simultaneously.

As shown in Figure1, a data dissemination path is
constructed as follows: the client hosting a senderS for-
wards all its published events to the sender’s rootSR
via the proxySP ; then the events are multicasted to the
proxy nodes of all subscribing receiversRP , hopping
through a set of intermediate forwarding nodesMF ; fi-
nally the events are forwarded to the clients hosting each
receiverR. Note theSR, set of intermediate forward-
ing MFs, and all subscribingRPs form an application-
level multicast (ALM) tree for the event stream pub-
lished byS. A policy propagates in the overlay with
the receiver’s subscription request so the policy embeds
in every node of the dissemination path, and multiple
receivers’ requests incrementally construct the multicast
tree. Castro et al. present and compare some of pro-
tocols that can be used to build ALM on peer-to-peer
overlays [3].

Due to the lack of space, we only briefly discuss how
PACK handles host mobility here. PACK starts to buffer
data on the sender client for all receivers if it is detached
from the proxy, or on the receiver proxy if some receiver
client has detached. If the receiver client departs, PACK
removes its subscription and all accumulated queues. If
a receiverR re-attaches to a proxyRP ′ different than its
previous proxyRP , it first asksRP ′ to join the multicast
tree and cancel its subscription atRP . ThenR asks
RP for all the buffered data before requesting data from
RP ′. A sequence number in the data units is used to
prevent duplicate delivery.

S

R

SP

SR

RP

MF

MF

R

RP

Figure 1. Multiple data dissemination
paths in the PACK overlay form an
application-level multicast tree.

3 Data-reduction policy
A policy defines an ordered list offilters, which re-

flects the receiver’s willingness to drop events under in-
creasingly desperate overflow conditions. Given filters
1 to n and an event queue for a subscription to be re-
duced, PACK determinesk so the events in the queue
pass through filters1 to k. Thus the higherk is, the more
filters are applied and the more events will be dropped.
The algorithm to determinek, given the current queue-
ing condition, is separate from policies (Section4).

An event contains a list ofattributes, and a filter de-
termines what events to keep and what to drop given an
event queue as input, based on events’ attribute values.
The filters are independent, do not communicate with
each other, and do not retain or share state. Optionally
a policy may also specify how to summarize dropped
events using adigester. The result of summarization
is a digestevent appended to the output event stream.
Thus an event queue may contain a mixed list of events
and digests. The digests give rough feedback to the re-
ceiver about which events were dropped, and also serve
as a queue overflow indication; the receiving application
may take action such as switching to different sensors or
using a faster algorithm to consume events.

We show an example policy in Figure2 using XML
syntax (although it is not the only possible specifica-
tion language). First the policy specifies that all the
filters apply on the attribute with tag “PulseRate”. It
is also possible to specify a different attribute for each
filter. All dropped events are summarized to inform
receivers about the maximum and minimum PulseRate
values of all dropped events. The first filter drops events
whose pulse rate has not changed much since the pre-
vious event; the second filter drops all events that have
pulse rate inside of a “normal” range (since they are less
important); and the last filter simply keeps the latest 10
events and drops everything else. In urgent queueing sit-
uations, all three filters are applied in sequence to each
event in the queue.

<policy attribute="PulseRate">
<summary>

<digester name="MAX">
<digester name="MIN">

</summary>
<level>

<filter name="DELTA">
<para name="change" value="5"/>

</filter>
</level>
<level>

<filter name="WITHIN">
<para name="low" value="50"/>
<para name="high" value="100"/>

</filter>
</level>
<level>

<filter name="LATEST">
<para name="window" value="10"/>

</filter>
</level>

</policy>

Figure 2. An example of PACK policy that
is applied to monitor a patient’s pulse rate.

Currently PACK supports basic comparison-based
filters, such as GT (>), GE (≥), EQ (=), NE (6=), LT
(<), LE (≤), MATCH (=∼), and WITHIN ([k1, k2]).
We also provide some set-based operators such as IN-
SET (∈), CONTAIN (3), SUBSET (⊂), SUPSET (⊃),
FIRST (retains only the first value in a set), and LAST
(retains only the last value in a set). More advanced
filters include UNIQ (remove adjacent duplicates), GU-
NIQ (remove all duplicates), DELTA (remove values not
changed much), LATEST (keep only lastN events), EV-
ERY (keep only everyN events), and RANDOM (ran-
domly throw away a certain fraction of events). The di-
gesters for summarization are MAX, MIN, COUNT, and
SUM, which have semantics as their name suggests.

4 Buffer management

A PACK host puts all events, either from a local
sender or from the network, into its buffer waiting to be
consumed by a local receiver or transmitted to the next
host on the path. A buffer is a data structure contain-
ing multiple subscriptions, or queues for receivers. We
distinguish two kinds of buffers: one is thelocal buffer
for endpoints on the same host, and the other is there-
mote buffercontaining events to be transmitted to clients
or some overlay node. Events in a local buffer are con-
sumed locally by the receivers’ event handlers, while the
events in a remote buffer are transmitted across a net-
work link. While there might be multiple endpoints on

S1

S2
S3
...

S1

S2
S3
...

a)

b)
R1

R2

R3

R1

R2
R3
...

L1

L2
L3
...

Figure 3. Two-level indexing structure of
local and remote buffers.

a client, there is only one local buffer for all resident
endpoints and one remote buffer for all destinations.

Both local and remote buffers adopt a two-level in-
dexing structure (shown in Figure3), where the first in-
dex is the sender’s key. The local buffer on a client uses
the receiver’s key as the second index, while a remote
buffer uses link address as the second index. An en-
try for a given link address means there is at least one
receiver subscribing to the corresponding sender across
that (overlay) link. The two indexes in a local buffer
point to a queue for a single receiver. On the other hand,
the two indexes in a remote buffer point to a shared
queue for all receivers across the same link under nor-
mal conditions. As the shared queue reaches its limit,
a private queue is created for each receiver and packed
using its individual policy.

4.1 Queue reduction

Each queue in a buffer has a limited size and may
overflow if its consumption rate is slower than the event
arrival rate. Whenever a new event arrives to a full
queue, PACK will trigger its PACK policy to reduce the
number of events in the queue. For a local buffer, this
operation is straightforward, since the second index of
the buffer points to a single queue with an individual re-
ceiver. The second index of a remote buffer, however, is
the link address that points to a queue shared by several
receivers over that link. When PACK decides to pack a
shared queue, it runs all the events in the queue through
each receiver’s policy, placing each policy’s output in a
private queue for that receiver. Note all the event dupli-
cation is based on references, not object instances. Fig-
ure3 shows private queues in the lower right.

All newly arrived events are added to the shared
queue, which is now empty. The buffer’s consumer
thread always pulls events from the private queues first
and uses the shared queue when all private queues are
empty. It is possible that another pack operation is nec-
essary if the shared queue fills up and adds more events

to private queues before they are completely drained.
Note a queue may be associated with multiple poli-

cies from receivers subscribed to the same sender. Dur-
ing queue overflow, all policies will be executed and the
results are kept separated to avoid conflicts. This means
that the amount of buffer state increases as the num-
ber of policies increases, posing a potential scalability
limitation on PACK buffer and preventing a wide-area
deployment with hundreds of thousands receivers. We
are willing to pay this price to have expressive policies
since most of our current applications are targeted at a
campus-wide deployment with a limited number of sub-
scribers for individual data sources. It is possible, how-
ever, to increase scalability by limiting the policy flexi-
bility [2].

4.2 Ladder algorithm

When packing an event queue is necessary, PACK
must determine which filters to apply. Packing with
too many filters may unnecessarily drop many important
events. On the other hand, packing with too few filters
may not drop enough events, and the time spent packing
may exceed the time saved processing or transmitting
events. Unfortunately there is no straightforward algo-
rithm for this choice, because there are many dynamic
factors to consider, such as the event arrival rate, current
network congestion, the filter drop ratio (which depends
on values in events), and the receiver consumption rate.

PACK employs a heuristic adaptive approach in
which each queue is assigned a specific filtering level
k (initially one). Oncek is determined given a packing
request, all events in the queue pass through filters1 to k
in sequence. The heuristic changes the filtering level up
or down one step at a time (like climbing up and down a
ladder), based on the observed history and current value
of a single metric. We define that metric, theturnaround
time t, to be the amount of time between the current
packing request and the most recent pack operation (at
a particular levell). The rationale is that changes intl
capture most of the above dynamic factors. An increase
in tl is due to a slowdown in the event arrival rate, an
increase in the departure rate, or an increase in the drop
rate of filters up to levell, all suggesting that it may be
safe to move down one level and reduce the number of
dropped events. A decrease oftl indicates changes in
the opposite direction and suggests moving up one level
to throw out more events.

PACK keeps historical turnaround time of all levels,
tl, smoothed using a low-pass filter with parameterα =
0.1 (empirically derived) from an observation̂tl:

tl = (1− α)t̂l + αtl .

We define the change ratio of the turnaround time at

a particular levell as:

δl = (t̂l − tl)/tl .

To respond to a current event-reduction request,
PACK chooses to move down one filtering level tol−1 if
δl exceeds a positive threshold (0.1), or to move up one
level to l + 1 if δl exceeds a negative threshold (−0.1).
Otherwise, PACK uses the previous level.

5 Implementation and evaluation

Our implementation is based on Java SDK 1.4.1. We
chose Pastry [10] as the overlay routing protocol, but
PACK uses its own TCP transport service to disseminate
events rather than Pastry’s transport library, which has
a mixed UDP/TCP mode and its own internal message
queues. We used Scribe [3] to maintain application-level
multicast trees for PACK to populate the subscription
policies.

We first present some experimental results using the
Emulab testbed at Utah, in which we focused on mea-
suring the performance of the PACK buffers inside the
infrastructure. Next we give an application study of the
PACK buffer on a client that tracked a large number of
wireless devices on campus.

5.1 Queueing tradeoff

To measure the queueing behavior when a policy is
triggered, we used Emulab to set up two hosts connected
by a 50Kbps network link. We placed a single receiver
on one host, and a single sender and an overlay node on
the other. The sender published an event every 30ms,
and the events accumulated at the overlay node due to
the slow link to the receiver. We compared two ap-
proaches to drop events when the queue fills: one is to
drop the new event, simulating “drop-tail” behavior, the
other is to use a three-filter PACK policy, each filter ran-
domly throwing out events (10%, 25%, and 50% respec-
tively). We show the results in Figure4. In all the tests
we turned off the just-in-time compiler and garbage col-
lector in the Java VM.

Figure 4(a) shows the latency perceived by the re-
ceiver. After the buffer filled up, events in the DropTail
queue had a (nearly constant) high latency because each
event had to go through the full length of the queue be-
fore transmission. On the other hand, events in the queue
managed by the PACK policy exhibited lower average
latency because events were pulled out of the middle of
the queue, so other events had less distance to travel.
From these results it is clear that PACK reduced latency
by dropping data according to application’s semantics,
and it is desirable for applications to use filters that are
more likely to drop events in the middle (such as EV-
ERY, RANDOM, GUNIQ) rather than at the tail.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

1000

2000

3000

4000

a) Sequence number

La
te

nc
y

(m
s)

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

b) Timeline (sec)

Lo
ss

 r
at

e
(1

s)

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

c) Timeline (sec)

P
ac

ki
ng

 r
at

io

Figure 4. Comparison of queueing behav-
ior using DropTail (solid line) and a three-
level PACK policy (dashed line).

Figure4(b) plots a running sequence of the event loss
rate for each 1 second window at the receiver. We see
that the DropTail queue’s loss rate was about 30% be-
cause the arrival rate was one third more than the bot-
tleneck link could handle, and after the queue filled it
was always saturated. The loss rate of PACK was high
during intervals when the queue was packed, and zero in
intervals when the queue was not packed. The loss rate
depended on which level pack operation was performed.
Figure4(c) shows a trace from the overlay node denot-
ing when the queue was packed and what fraction of
events were dropped. It shows that most pack operations
were performed at the second level, dropping events at
rate of0.1 + 0.9 ∗ 0.25 = 0.325, which fit well with this
event flow because the arrival rate was one third higher
than the consumption rate (link bandwidth). Our heuris-
tic algorithm worked reasonable well, although the fil-
tering level varied despite the steady publication rate.
The reason is that the RANDOM filter dropped varying
amounts of events and our ladder algorithm adapted to
longer or shorter inter-packing intervals by adjusting the
filtering level.

5.2 Application study
As an example application, we use PACK to mon-

itor a campus-wide wireless network. Our campus is
covered by more than 550 802.11b access points (APs),
each configured to send its syslog messages to a com-
puter in our lab. We run a data source on that host to
parse the raw messages into a more structured represen-
tation and to publish a continuous event stream. By sub-
scribing to this syslog source, applications can be noti-
fied when a client associates with an AP, roams within
the network, or leaves the network.

One of our goals is to provide an IP-based location

1 2 3 4 5 6
0

20

40

60

80

Packing level (k)

T
rig

ge
re

d
tim

es

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Packing level (k)

A
vg

 p
ac

ki
ng

 r
at

io

0 25 50 75 100
0

0.2

0.4

0.6

0.8

1

Packing interval (sec)

C
D

F

0 25 50 75 100
0

0.2

0.4

0.6

0.8

1

Query latency (sec)

C
D

F

Figure 5. Statistics derived from an one-
hour trace collected by the MAC/IP locator.

service: given a wireless IP address, the service can
identify the AP where the device is currently associated.
This enables us to deploy location-based applications,
often without modifying legacy software. For instance,
we modified an open source Web proxy so it can push
location-oriented content to any requesting Web browser
on wireless devices based on the IP address in the HTTP
header. Currently we insert information about the build-
ing as a text bar on top of the client requested page.

To provide this kind of service, a locator subscribes
to the syslog source and monitors all devices’ associa-
tion with the network. The association message contains
the device’s MAC address and associated AP name, but
does not always include the IP address of that device. In
such cases, the locator queries the AP for the IP address
of its associated clients using a HTTP-based interface
(SNMP is another choice, but appears to be slower). The
query takes from hundreds of milliseconds to dozens of
seconds, depending on the AP’s current load and config-
uration. We also do not permit more than one query in
30 seconds to the same AP so our queries do not pose
too much overhead over normal traffic. As a result, we
frequently find that the locator falls behind the syslog
event stream, considering the large wireless population
we have.

We focus our discussion on the subscription made by
the locator to the syslog source, where the events tend
to overflow the receiver’s queue RB. The locator uses
a PACK policy consisting of six filters (we skip their
description due to space limitation). We collected the
PACK trace for an hour-long run and Figure5 shows
some basic statistics.

The upper-left plot presents the distribution of the fil-
tering levels triggered by the PACK service. All filter-
ing levels were triggered, varying from 31 times to 61

times, out of 304 pack operations. The upper-right plot
shows that the filters had a wide variety of packing ratios
over that one-hour load. It seemed that the filter 2 and
4 discarded most of the events while filters 1, 3 and 5
did not help much. This suggests strongly that an appli-
cation programmer should study the workload carefully
to configure efficient policies. The lower-left plot indi-
cates that PACK triggered the policy rather frequently,
with the median interval approximately 11 seconds. The
lower-right plot shows the latency distribution, derived
from the time the AP query is resolved and the times-
tamp in the original syslog event. Although we set the
connection timeout to be 30 seconds for each query, the
longest delay to return a query was 84 seconds; some
AP was under heavy load and slow to return results even
after the connection was established.

6 Related work

Traditional congestion and flow-control protocols
concern both unicast and multicast. They are typically
transparent to applications and provide semantics such
as reliable in-order data transport. When computational
and network resources are limited, these protocols have
to either regulate the sender’s rate or disconnect the slow
receivers [5, 9]. The usual alternative, UDP/IP, has no
guarantees about delivery or ordering, and forces appli-
cations to tolerate any and all loss, end to end. Our goal,
on the other hand, is to trade reliability for quicker data
delivery and service continuity for loss-tolerant applica-
tions. Our PACK service applies to data streams with a
particular structure. This loss of generality, however, en-
ables PACK to enforce receiver-specified policies. The
PACK protocol does not prevent or bound the amount
of congestion, which is also dependent on cross traffic.
But with an appropriate customized policy, a receiver is
able to get critical data or summary information during
congestion. For many applications this outcome is bet-
ter than a strict reliable service (TCP) or a random-loss
(UDP) service.

Performing application-specific computation, includ-
ing filtering, inside networks is not a new idea. In par-
ticular, it is possible to implement our PACK service
using a general Active Network (AN) framework [12].
We, however, chose an overlay network that is easier
to deploy and has explicit support for multicast, mo-
bility, and data reduction. Bhattacharjee and others
propose to manage congestion by dropping data units
based on source-attached policies [1]. Receiver-driven
layered multicast (RLM) [6], actively detects network
congestion and finds the best multicast group (layer) to
which the multimedia application should join. Pasquale
et al. put sink-supplied filters as close to the audio/video
source as possible to save network bandwidth [8]. Our
work, however, aims at broader categories of applica-

tions and has to support sink-customized policies since
the source typically cannot predict how the sinks want to
manipulate the sensor data. PACK policies thus need to
be more expressive than the filtering operations on mul-
timedia streams.

Researchers in the database community provide a
query-oriented view on continuous stream processing.
One of the focus is to formally define a SQL-like stream-
manipulation language, which has the potential to re-
place PACK’s current “ad hoc” XML-based interface.
In particular, the Aurora system reduces the load by dy-
namically injecting data-drop operators in a query net-
work [11]. Choosing where to put the dropper and how
much to drop is based on the “QoS graph” specified by
applications. Aurora assumes a complete knowledge of
the query network and uses a pre-generated table of drop
locations as the search space. The QoS function pro-
vides quantitative feedback when dropping data while
PACK allows explicit summarization of dropped events.

7 Conclusion and Future Work
We present a novel approach to solve the queue

overflow problem using application-specified poli-
cies, taking advantage of the observation that many
context-aware pervasive-computing applications are
loss-tolerant in nature. Our PACK service enforces data-
reduction policies throughout the data path when queues
overflow, caused by network congestion, slow receivers,
or temporary disconnection. Our sink-based approach
and the expressiveness of PACK policies poses a scala-
bility limitation, but provides more fine-grained results
tailed to applications’ needs as a trade off. Our experi-
mental results show that PACK policies also reduce av-
erage delivery latency for fast data streams, and our ap-
plication study shows that the PACK service works well
in practice.

We plan to evaluate PACK service in larger-scale set-
tings, in particular, to investigate how policy-driven data
reduction affects the fairness across multiple subscrip-
tions with intersected dissemination paths. PACK cur-
rently assumes static policies, and it is another research
challenge how to allow and enforce dynamic updates of
policy throughout the data path while preserving appli-
cation semantics. It would also be interesting to see
whether PACK can dynamically (re)-configure the ap-
propriate filters to minimize a programmer’s effort to
specify filters in exact sequence. Finally, we plan to
extend this policy-driven data reduction approach to an
infrastructure-free environment, such as an ad hoc net-
work.

References

[1] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura. An
architecture for active networking. InProceedings of

High Performance Networking (HPN’97), April 1997.
[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achiev-

ing scalability and expressiveness in an Internet-scale
event notification service. InProceedings of the 19th
Annual Symposium on Principles of Distributed Com-
puting, pages 219–227, Portland, OR, 2000.

[3] M. Castro, M. Jones, A.-M. Kermarrec, A. Rowstron,
M. Theimer, H. Wang, and A. Wolman. An evaluation of
scalable application-level multicast built using peer-to-
peer overlays. InProceedings of the 22nd Annual Joint
Conference of the IEEE Computer and Communications
Societies, pages 1510–1520, San Francisco, CA, 2003.

[4] D. D. Clark and D. L. Tennenhouse. Architectural con-
siderations for a new generation of protocols. InPro-
ceedings of the 1990 ACM Conference on Applications,
Technologies, Architectures, and Protocols for Com-
puter Communications, pages 200–208, Philadelphia,
PA, 1990.

[5] V. Jacobson. Congestion avoidance and control. InPro-
ceedings of the Symposium on Communications Archi-
tectures and Protocols, pages 314–329, Stanford, CA,
1988.

[6] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-
driven layered multicast. InProceedings of the 1996
ACM Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications,
pages 117–130, Palo Alto, CA, 1996.

[7] J. F. McCarthy and E. S. Meidel. ActiveMap: A Vi-
sualization Tool for Location Awareness to Support In-
formal Interactions. InProceedings of the First Inter-
national Symposium on Handheld and Ubiquitous Com-
puting, pages 158–170, Karlsruhe, Germany, September
1999. Springer-Verlag.

[8] J. C. Pasquale, G. C. Polyzos, E. W. Anderson, and V. P.
Kompella. Filter propagation in dissemination trees:
Trading off bandwidth and processing in continuous me-
dia networks. InProceedings of the 4th International
Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV 93), pages 259–
268, 1993.

[9] S. Pingali, D. Towsley, and J. F. Kurose. A comparison
of sender-initiated and receiver-initiated reliable multi-
cast protocols. InProceedings of the 1994 ACM Confer-
ence on Measurement and Modeling of Computer Sys-
tems, pages 221–230, Nashville, TN, 1994.

[10] A. Rowstron and P. Druschel. Pastry: Scalable, Decen-
tralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems. InProceedings of the 2001 Inter-
national Middleware Conference, pages 329–350, Hei-
delberg, Germany, November 2001.

[11] N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherni-
ack, and M. Stonebraker. Load Shedding in a Data
Stream Manager. InProceedings of the 29th Interna-
tional Conference on Very Large Data Bases, pages 309–
320, Berlin, Germany, September 2003.

[12] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden. A survey of active network
research.IEEE Communications, 35(1):80–86, January
1997.

	Introduction
	Data dissemination
	Data-reduction policy
	Buffer management
	Queue reduction
	Ladder algorithm

	Implementation and evaluation
	Queueing tradeoff
	Application study

	Related work
	Conclusion and Future Work

