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Abstract

In this paper we motivate a Context Fusion Network
(CFN), an infrastructure model that allows context-
aware applications to select distributed data sources
and compose them with customized data-fusion opera-
tors into a directed acyclic information fusion graph.
Such a graph represents how an application computes
high-level understandings of its execution context from
low-level sensory data. Multiple graphs by different ap-
plications inter-connect with each other to form a global
graph. A key advantage of a CFN is re-usability, both
at code-level and instance-level, facilitated by opera-
tor composition. We designed and implemented a dis-
tributed CFN system, Solar, which maps the logical op-
erator graph representation onto a set of overlay hosts.
In particular, Solar meets the challenges inherent to het-
erogeneous and volatile ubicomp environments. By ab-
stracting most complexities into the infrastructure, So-
lar facilitates both the development and deployment of
context-aware applications. We present the operator
composition model, basic services of the Solar overlay
network, and programming support for the developers.
We also discuss some applications built with Solar and
the lessons we learned from our experience.

1 Introduction

Applications in a computation and communication
saturated ubicomp environment have to gracefully inte-
grate with human users. The sheer amount of context
information produced by a sensor-rich environment may
overwhelm a user if not carefully managed. To minimize
user distraction the applications must be aware of and
adapt to the situation in which they are running, such as
the state of the physical space, the users, and the com-
putational resources. When informed about such infor-
mation, applications are able to modify their behaviors

reactively or proactively to assist user tasks. We loosely
define “context” to be the set of environmental states
and interactions that either determines an application’s
behavior or in which an application event occurs and
is interesting to the user. The context is time-sensitive,
which means that the environmental states and interac-
tions could either be historically recorded or currently
happening.

Unlike explicit user input, context represents implicit
input to the application. An application typically in-
fers context information from various sensors. An in-
herent challenge for context-aware applications is that
they have to work with knowledge of world state de-
rived from potentially incomplete and error-prone sen-
sory data. To remedy this situation, applications may
have to aggregate data from multiple sources (either sim-
ilar or different types) to improve the quality of com-
puted context. The aggregation algorithms for data
fusion may be simple logical combinations based on
current sensory values, or may be more sophisticated
machine-learning techniques based on historical obser-
vations. We call this process, computing higher-level
understanding from lower-level sensory data, “context
fusion”. The output of the fusion process is the context
to be fed into applications.

It is possible to integrate all the sensors on a sin-
gle platform where an application runs, such as an aug-
mented mobile phone [29]. We are, however, concerned
about larger scenarios with physically distributed sen-
sors and other online sources, while multiple applica-
tions on different devices may benefit from information
aggregated from the sensor data. These applications re-
quire customized context, but may also share similar
data-fusion steps over shared sensors.

Given the overwhelming complexity of a heteroge-
neous and volatile ubicomp environment, it is not ac-
ceptable for individual applications to maintain connec-
tions to sensors and to process the raw data from scratch.



On the other hand, it is not feasible to deploy a com-
mon context service that could meet every application’s
needs either. Instead, we envision an infrastructure that
allows applications to reuse the context-fusion services
already deployed, and to inject additional aggregation
functions for context customization and user personal-
ization where necessary.

The thesis of our research is thus to provide such a
system that is both flexible to meet diverse application
needs and scalable to service hundreds and thousands of
sensors, applications, and users. This system is not just a
Content Delivery Network (CDN), which connects mul-
tiple sources and sinks; instead, the system needs also
to accommodate application-specific data-fusion func-
tions that deliver higher-level context to applications.
We call the resulting system a Context Fusion Network
(CFN). Compared to a CDN, a CFN needs to provide ad-
ditional functionalities of managing application-specific
data-fusion functions.

We consider two application areas that may take ad-
vantage of a CFN,smart spacesand emergency re-
sponse. In both environments a fleet of applications
derive their contextual information from many shared
and distributed sensors. Consider an intelligent building
with sensors embedded in every room, hallway, and ap-
pliance. Applications in such a space may want to track
and react to users’ location, activities, and so on. Con-
sider also disaster and crisis response. The situation may
involve a large number of sensors and devices carried by
responders and victims, and deployed in environments
beforehand or on-demand. People with different roles at
local and remote sites need different contextual informa-
tion to support their decision making. As the response
evolves, the decision makers may use a CFN to quickly
deploy new fusion functions that are not expected be-
forehand.

There are four challenges to be addressed, however,
to provide a CFN in a heterogeneous and volatile ubi-
comp environment. First, a CFN must beflexible. It
must allow both deployment of well-known context ser-
vices and application specified customization and per-
sonalization. A CFN should also be flexible to accom-
modate arbitrary context-fusion algorithms chosen by
individual applications. Second, a CFN must bescal-
ableto handle a large number of sensors, devices, appli-
cations, and users. It should be easy to increase the CFN
capacity to handle increased load as necessary. Third,
a CFN must explicitly supportmobility, both at phys-
ical and logical level. A moving device connecting to
a CFN may traverse both geographic and networking
boundaries. The context-fusion components may also
have to migrate in the infrastructure to balance the load,
or to efficiently use the bandwidth. Finally, the overall
complexity of a ubicomp environment requires a CFN to

be self-managedwith minimum user intervention nec-
essary. A dependable CFN must proactively monitor
node failures, automatically recover lost components,
and garbage-collect application-specific fusion compo-
nents that are no longer in use.

Note that the sensor providers and application de-
velopers may not be the same party. Thus another set
of challenges for a CFN is how to deal with data het-
erogeneity, both at the syntax and semantics level so
interoperability can be achieved. The solution to this
problem requires both tools and standards, for instance,
from the ontology and semantic Web research commu-
nity. We assume that the semantic functionality resides
at a higher layer above the CFN, and we do not address
it in this paper.

We have implemented an overlay-based distributed
CFN, namedSolar, to meet the four research challenges.
The rest of paper is organized as follows. We present
an operator composition model in Section2. Sections3
and4 describe Solar’s overlay platform and a set of ba-
sic services that are used to manage operator graphs. We
discuss programming support for Solar applications in
Section5, and the applications that have been or are be-
ing built with Solar in Section6. Finally we discuss re-
lated work in Section7 and conclude in Section8.

2 Operator composition

One of Solar’s goals is to facilitate the development
and deployment of large-scale context-aware applica-
tions. We note that many applications using the same
or overlapping set of data sources need to go through
similar data-processing steps to get usable contextual in-
formation. It is thus critical for Solar to provide a com-
posable framework that promotes software re-usability.

We consider two kinds of reuse: one iscode-
based reusethat allows applications to import exist-
ing modules from documented libraries; and the other
is instance-based reusethat allows applications to dis-
cover and use the service provided by already deployed
data-processing components. From the application’s
viewpoint, Solar encourages a modular structure and re-
duces the programmer’s task through code-based reuse.
From the system’s viewpoint, Solar minimizes redun-
dant computation and network traffic to increase scala-
bility through instance-based reuse.

2.1 Architecture style

One popular software architectural style for data-
stream oriented processing isfilter-and-pipe[30], which
supports reuse through composition. In the filter-and-
pipe style, as shown in Figure1, each component (fil-
ter) has a set of inputs and a set of outputs. A com-
ponent reads streams of data on its inputs and produces
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Figure 1. The filter-and-pipe software ar-
chitecture style promotes reuse and com-
position.

streams of data on its outputs. A connector (pipe) serves
as conduits for the streams, transmitting outputs of one
filter to inputs of another. The data flow starts from a
source, through a sequence of pipes and filters, and fi-
nally reaches a sink.

Some advantages of the filter-and-pipe style are [30]:
1) filters are independent and can be treated as black
boxes to promote functionality isolation; 2) filters typ-
ically do not know the identities of their upstream and
downstream components, which helps to ensure low
coupling; 3) pipes and filters can be hierarchically com-
posed; 4) the construction of the pipe and filter sequence
can often be delayed until runtime (late binding) based
on the current application state; and 5) it is relatively
easy to run a pipe-and-filter system on parallel proces-
sors or in multiple threads on a single processor. Sample
implementations of the filter-and-pipe style in practice,
often centralized, include Unix pipes [1], structured Web
servers, compiler construction, language design [31],
and software routers [20].

2.2 Operator graph

We now present Solar’s context fusion model, follow-
ing the filter-and-pipe style. First we define some terms
for the following discussions. In our terminology, a fil-
ter is an “operator” and a pipe is a “channel”. A channel
connects to asourceat one end, and to asinkat the other
end. Asensorprovides (raw) data to Solar while anap-
plicationconsumes (contextual) data from Solar. A sen-
sor is also a source and an application is also a sink. An
operator is both a source and a sink.

An operator is a self-contained data-processing com-
ponent, which takes one or more data sources as input
and acts as another data source. Each operator has a set
of input portsand a set ofoutput ports. For simplicity,
we call an input port aninport and an output port anout-
port. Each port has a unique identifier within its operator
to distinguish it from other ports. A channel connects an
outport of an upstream source to an inport of a down-
stream sink, and all data flows from source’s outport to
the sink’s inport.

A port can be eitherpush-basedor pull-based. A
channel connecting a push-based outport and a push-
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Figure 2. An example operator graph with
two sensors and two applications. The
shaded squares are inports while unfilled
squares are outports. The dashed lines
are pull channels and the solid lines are
push channels.

based inport is apush channel. A channel connecting a
pull-based outport and a pull-based inport is apull chan-
nel. With a push channel, the source voluntarily passes
data units, which we callevents, to the sink. With a
pull channel, the sink sends an explicit request, called a
query, to the source and the result is then passed through
the channel. It is illegal, however, for a channel to con-
nect two ports with mismatched push/pull types. Note
that an outport may have multiple channels connected.
For a push channel, we call the downstream sink as a
subscriberwho subscribes to the upstream source, or a
publisher.

In Solar’s model, events are encoded in a data struc-
ture called arecord. A record is a set of attributes, each
of which contains pair of atagstring and avalueobject.
The value of an attribute could be another record to form
an attribute hierarchy.

Figure2 shows a sample operator graph. The “loca-
tor” operator receives location updates of every badge
from a Versus sensor1 and publishes location-change
events through push channels,b andc. An ActiveMap
application simply displays every badge’s current loca-
tion. A reminder application receives filtered location-
change events about a particular user, and it also queries
the user’s calendar about location of the next appoint-
ment. Based on this context information, the reminder
then decides the appropriate time to alert the user.

Note the operator “locator” keeps internal state (the
current location of all badges) and only publishes an
event when some badge moves. Whenever a copy of the
ActiveMap application starts up, it bootstraps by pulling
the channelf to get every badge’s current location. Oth-
erwise, it may not be able to show the location of slowly-
moving badges, such as those attached to printers.

1http://www.versustech.com/



2.3 Functional separation

Solar’s model separates two roles: operator developer
and graph composer (typically the application). The de-
veloper is responsible for defining aport specification
for each operator, including the identifier and push/pull
type of all inports and outports. While currently not
adopted in Solar, the specification may further specify
the event structure (attribute tags and type of the values)
intended for each port. Based on the port specifications,
the composer can build an operator graph with channels
connecting appropriate ports.

The port specifications should be documented by an
operator developer and ideally be stored in acode repos-
itory with APIs allowing programmable inspection. A
composer who builds an operator graph, whether a hu-
man or a program, may use the code repository as a li-
brary to import the operator modules into a composed
graph. The repository thus enables code-based opera-
tor reuse. On the other hand, any instantiated operators
may also register a name advertisement in aname direc-
tory and act as a virtual sensor. In a composed operator
graph, the sensors are specified as name queries that are
resolved by the directory to select from existing named
sensors or operators. The name directory thus enables
instance-based operator reuse.

3 Service platform

Given logical operator-graph specifications, a CFN
provides a platform to connect the distributed sensors
and applications and to execute the operators. In this
section, we describe Solar’s service platform that is
based on a self-managed overlay network. The software
package of Solar is written in Java.

3.1 Planetary overlay

Solar consists of a set of functionally equivalent
hosts, named Planets, which peer together to form a
service overlay using a distributed hash table (DHT)
based peer-to-peer protocol (specifically Pastry [27]).
As shown in Figure3, a sensorS may connect to any
Planet to advertise its availability and an applicationA
may connect to any Planet to select sensors and aggre-
gate their data streams with customized operators. The
Planets cooperatively provide several common services
that are used to manage the operators and the data flows.
We discuss the relevant services in Section4.

Each Planet is a peer node in the overlay network and
has a unique key randomly chosen from a large numeric
space. The Pastry’s peer-to-peer routing substrate pro-
vides a transport method to send a message to a desti-
nation identified by key, instead of an IP address. The
message will be routed to the Planet whose key is cur-
rently closest to the destination key inO(log(n)) hops.
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Figure 3. Solar consists of a set of func-
tionally equivalent nodes, named Planets
(denoted P), which peer together to form
a service overlay using a P2P routing pro-
tocol. Sources S and applications A may
connect to any Planet. The filled circles are
operators and the arrows represent data
flow.

Many Solar services take advantage of this hashtable-
like interface. The overlay network is self-organizing
and self-repairing and simulations on realistic network
topologies show that: 1) the delay stretch compared with
direct IP transport is usually below two, and 2) the paths
for messages sent to the same key from nearby nodes in
the underlying network converge quickly after a small
number of hops [6].

3.2 Planet architecture

Planets are execution environments for opera-
tors and they cooperatively provide several operator-
management functionalities, such as naming and dis-
covery, routing the sensory data through operators to
applications, operator monitoring and recovery in face
of host failures, and garbage collecting operators that
are no longer in use. These requirements make Solar
a complex infrastructure, and Solar provides a service-
oriented architecture to meet the software engineering
challenges.

We consider each functionality mentioned above a
service, which runs on every Planet. The core of the
Planet is a service manager, which contains a set of ser-
vices that interact with each other to manage operators
and route events. We show the architectural diagram of
a Planet in Figure4.

A Planet has two kinds of message transports: normal
TCP/IP based and DHT (Pastry) based services. Thus a
service running on the Planet may send message with
destination specified either as a socket address or as a
numeric key. A dispatcher routes incoming messages
from two transports to all other Solar services based on
the multiplex header. From a service’s point of view,
it always sends messages to its peer service on another
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Figure 4. The diagram of Planet architec-
ture, which exposes two kinds of trans-
port interface: normal socket communi-
cation and peer-to-peer routing. The dis-
patcher multiplexes received messages to
other Solar services.

Planet. A service may also get a handle of another ser-
vice on the same Planet and directly invoke its local in-
terface methods.

An application, which is a Solar client, sends a re-
quest to thefusionservice on the Planet the application
connects to. The fusion service may ask the local direc-
tory service to discover sensors desired by the applica-
tion. The directory services on all the Planets determine
among themselves how to partition the name space, or
which Planet stores what name advertisements, while
the directory users do not need to know the internals.

We believe that our architecture based on service-
level modules is a simple but powerful abstraction
to build distributed systems, particularly overlay-based
systems. The idea builds on object-oriented modules
and allows easy upgrading and swapping of service im-
plementations as long as the service interface does not
change. For instance, we could easily add a caching ca-
pability to the directory service to improve query perfor-
mance. The hidden intra-service communication, either
through TCP/IP or DHT transport, is important to ensure
low service coupling. The local access to remote ser-
vice through a downloaded proxy in Jini shares a similar
idea [32].

Our architectural approach also allows us to extract
some common functionalities from several services and
consider them primitive services. For instance, both the
RPC service, simulating blocking remote calls, and the
Heartbeat service, sending certain messages to a remote
peer periodically (not shown in Figure4), are used by
several other services. Thus we can improve the Planet
efficiency by reducing redundant resource usage.

The set of services on a Planet is configurable and

it is easy to add new functionalities to a Planetary net-
work by simply adding another service to each Planet.
For instance, we are building a Web proxy service on
the Planet. Besides serving HTTP pages for clients,
the proxies are all federated with the Planetary network
so that they could work together on content caching,
prefetching, and re-directing the requests [34]. The new
service may simply reuse the existing services, such as
directory, multicast, and fusion.

The fusion service on a Planet manages local opera-
tors and schedules their execution. It uses the directory
service to select sensors or other named operators de-
sired by applications. Events sent to push channels are
disseminated through an application-level multicast fa-
cility for improved scalability. The dispatch service reg-
isters callback with both transports to receive messages,
which contains multiplex header indicating the destina-
tion service. The mobility service tracks clients (sensors
or applications), which may detach from a Planet and re-
attach to another one. The dependency service is used to
monitor and recover operators in case of Planet failures.
We present these services in next section.

4 Solar services

In this section we discuss several Solar services that
manage the operator graphs in Planetary network. Al-
though the capacity of a given set of Planets is limited, it
is easy to increase the capacity by adding more Planets
while Solar’s services are designed to harness the new
Planets automatically.

4.1 Client mobility

Solar employs a client-service model in which a
client may connect to any Planet, as the client’s proxy,
for service. A client hosts one or moreendpoints,
namely the sensors or applications. A mobile client may
experience temporary disconnections due to weak links
or mobility hand-offs. During disconnection, a client
may roam and change its network address (network mo-
bility), and it may or may not choose the original Planet
when it reconnects (host mobility). A client may also
voluntarily decide to switch Planets if it finds a “bet-
ter” one, such as one that is closer or has a lighter load.
The proxy may also make its own decision to discon-
nect a client, if the proxy is about to shut down or is too
crowded, and force the client to select a different Planet.

Thus the client and its proxy Planet engage in a pro-
tocol maintaining state about each other. A client (thus
the endpoints it hosts) may appear in three states to the
proxy: attached, detached, or departed. State transi-
tions fromattachedto detachedare triggered either by
explicit requests or by missing several heartbeat signals.
If the client has been detached longer than a config-



urable threshold, the proxy assumes the client has de-
parted (and will not re-attach to this Planet). The proxy
appears to the client in two states:attachedor detached;
transitions are managed in a way similar to the client
state. The proxy is responsible for relaying events and
queries for attached clients, and buffering the events for
detached clients as discussed in next subsection.

4.2 Data dissemination

A sensor or operator may publish an event stream
through a specific outport, which may have multiple
push channels connected. In other words, an event
stream could have many subscribers. Solar uses Pas-
try’s application-level multicast facility to disseminate
the events for scalability reasons. Each push-based out-
port has a unique key and the events coming out of
that port are routed to the Planet that is responsible for
that key. That Planet is the root of the multicast tree,
which is built incrementally as subscribers arrive on any
Planet [7].

Conceptually there is a FIFO buffer on every node of
the data path from sender to receiver. The data in a buffer
may accumulate due to network congestion, temporarily
client disconnection, or slow receiver consumption. The
stream aggregation involved in data fusion and the con-
straints of devices hosting mobile applications all make
buffers more vulnerable to overflow. Unlike traditional
approaches that arbitrarily drop data or pause the sender,
Solar allows the push channel to be associated with a
data-reduction policy. The policy states how to drop or
summarize portion of the data streams. The flexibility
of pushing application-specific policies into the CFN al-
lows loss-tolerant applications to trade in-order reliable
delivery with timely transmission that respects applica-
tion semantics.

Solar’s multicast service registers with the mobility
service, to be notified when clients detach or attach.
As a receiver moves from one Planet to another, it re-
ceives old events buffered at its old proxy before it joins
the new proxy. We present the details of Solar’s data
dissemination service, including the data-reduction ap-
proach, in another paper [10].

4.3 Naming and discovery

Every sensor registers aname advertisementin So-
lar’s directory service, and optionally the deployed op-
erators may also register an advertisement. Applications
then usename queriesto select desired sources, com-
posing them with an operator graph that produces the
context needed by the application. A name advertise-
ment or a name query contains a set of attributes, each
of which is a tag-value pair. The value of an attribute
could be another set of attributes, thus forming an at-
tribute hierarchy. A path from the root to a leaf is called

a name strand. A name matches a query if the query’s
strands are a subset of the name’s strands. Solar stores
the name on these Planets that are responsible for the
keys hashed from the name strands, in a way similar
to INS/Twine [2]. The expressiveness of name queries
may be enhanced by a customized function that is eval-
uated over matched names to select one of the satisfying
sources.

To cope with the dynamics of a ubicomp environ-
ment, Solar exposes two interfaces in addition to those
in traditional directory services. First, it supports con-
tinuous queries so the directory will actively notify the
querying entity about changes in name space regarding
to the query. Second, Solar supports context-sensitive
names and queries, in which the attribute values may
be defined by context computed from another opera-
tor graph. By combining these two features, an oper-
ator graph can be automatically reconfigured according
to context changes. For instance, an instant messaging
client on a mobile device may automatically highlight
the names of buddies nearby. More information about
Solar’s directory service is in an earlier paper [9].

4.4 Dependency management

If an operator fails, its hosting Planet can simply
restart it. It is also necessary for Solar to detect and re-
cover failed clients or Planets. Solar provides a general
dependency management service for distributed compo-
nents. It contains two functionalities: monitoring and
recovery, and tracking the state of components on be-
half of their dependents. Each component of the opera-
tor graph registers aconfiguration, containing informa-
tion on how to restart it in case it fails. Solar employs a
self-monitoring protocol in which every Planet chooses
a randomly selected peer to monitor its liveness. If a
Planet fails, all its hosted operators are restarted at an-
other Planet. If a client fails, Solar may try to restart
it according to its configuration. Note that the moni-
toring protocol is bi-directional, namely, the Planet will
re-select its monitoring peer if the peer itself fails.

Each component may also specify a policy for each
dependency relation, stating how to handle the case
when the component it depends on has failed or moved.
The dependency could be instance-based, so the depen-
dent waits until the upstream operators restart. The de-
pendency could also be name-based, so the dependent
may switch to a different source if the evaluation of the
name query changes. The dependency policies are man-
aged at the Planet responsible for the dependent’s key.
When an operator has no dependents any more, perhaps
because its application has departed, it is garbage col-
lected to reclaim the resources. The dependency service
and the self-managed routing subsystem allow Solar to
tolerate many common failure modes. We present the



details of Solar’s dependency management in another
paper [11].

4.5 Load balancing

When an application requests the deployment of an
operator graph, Solar launches the operators on avail-
able Planets. Solar attempts to deploy operators, and
re-arrange them as necessary, to balance the computa-
tional load on Planets and to reduce inter-Planet com-
munication traffic. This iterative re-deployment process
is self-monitoring and self-tuning. The Planet profiles
the load of each operator, measuring its CPU usage and
the event-arrival rate for each incoming channel.

We then abstract the load-balancing problem into a
k-way min-cut graph-partitioning problem, wherek is
the number of Planets. We abstract the operator graph
into a flow graph where nodes represent operators and
edges represent channels; node weights represent opera-
tor CPU usage and edge weights represent event flow on
that channel. We used MeTis,2 a fast and scalable graph-
partitioning software package, to compute an approxi-
mate partitioning that attempts to minimize the commu-
nication cut and balance the load.

To balance CPU load requires centralized knowl-
edge of the CPU load of every operator and traffic flow
on every channel, information that is expensive to col-
lect. Fortunately, this global load-balancing effort is
only mandatory when the CPU load of some Planet(s)
is above a high threshold. More often we apply a “lo-
cal” effort focused only on reducing traffic among Plan-
ets. In this case, we apply the same min-cut algorithm
to the graph corresponding to a single application or a
small group of applications. From our analysis, this lo-
cal tuning reduces inter-Planet traffic globally as well as
locally, without substantially harming global CPU bal-
ance. We use this local tuning frequently, and the global
tuning occasionally.

5 Programming support

Solar provides an XML-based composition language
for composers (typically applications) to specify op-
erator graphs, identifying context-fusion operators and
name queries that select sources. The language allows
components to be connected using pull or push channels.
In addition, the composer may associate a caching pol-
icy with a pull channel, or a data-reduction policy with
a push channel. The caching policy allows quick return
of queries while the data-reduction policy states how to
drop or summarize an event queue.

The operator developers, on the other hand, con-
struct operators by extending a suite of base classes.

2http://www-users.cs.umn.edu/˜karypis/metis

Our current operator library contains a variety of filters,
transformers, and aggregators. We are also interested
in providing operators that capture advanced machine-
learning algorithms.

Solar does not restrict the syntax of its events, as long
as it follows a hierarchical attribute structure. Thus it is
easy to incorporate XML events into the Solar system.
An advantage of using XML events is that we can use
XSLT or XQuery to program the operators. Although
they cannot fulfill arbitrary data-fusion functions, they
are easy to write and quick to deploy for simple data
processing [35]. It is also possible to provide a domain-
specific language that specify the context-fusion logic,
which Solar then parses into several operators for de-
ployment [8]. IBM’s iQL is an example of such a lan-
guage [12].

6 Applications

In this section we overview some applications we
built with Solar for two types of environments, smart
spaces and emergency response. We then discuss the
lessons we learned from our experience.

6.1 Smart space

We have installed an infrared-based badge-tracking
system that covers our department building, to identify
the location of badge-wearing people on a room by room
granularity. Solar has been used by ubicomp students
to develop several applications, such as a wall-mounted
Web portal that shows content personalized for the ap-
proaching user, and a “smart reminder” that alerts its
user about events in advance at a time that depends on
her current location and the location of next appoint-
ment [23]. Recently we instrumented an office by ty-
ing motion and pressure sensors to the chairs, then ag-
gregating their outputs to detect whether a meeting is in
progress, based on which a controller may automatically
route incoming calls to voice mail without interrupting
the meetings [33].

Our campus is covered by a wireless network with
more than 550 WiFi access points, each of which is
configured to forward their syslog messages to a work-
station in our lab. The messages indicate events such
as a client associating, roaming, or leaving the net-
work, and are published by a Solar sensor. By subscrib-
ing to this sensor, applications may know the approxi-
mate location of the wireless clients. We developed a
location-dependent “graffiti” application that allows its
user to leave text or graphical notes at the current loca-
tion, or to see others’ notes left nearby. We also imple-
mented a Web proxy that automatically pushes location-
dependent information to a wireless client browser [10].



6.2 Emergency response

Solar is currently being deployed for a new project,
based on an earlier system called the Automated Re-
mote Triage and Emergency Management Information
System.3 These emergency-response applications use a
large number of data streams from environmental sen-
sors, physiological sensors (attached to victims and re-
sponders), and human observer inputs. Command and
control applications use Solar to compute high-level and
customized contextual information for the decision mak-
ers from different participating organizations. The goal
of Solar in this project is to provide situational aware-
ness at all levels of the incident command hierarchy.

Based on our field studies with responders and lo-
cal authorities, we have learned that the environment
and situation can change quickly. Some of the changes
cause automatic operator-graph reconfiguration using
our naming and discovery service and dependency man-
agement service. On the other hand, some context needs
may not be foreseen beforehand. The decision makers
may have to quickly deploy new operator graphs in the
Solar network using Solar’s development and deploy-
ment toolsets.

6.3 Discussion

We note that applications may use contextactively
or passively. In smart-space scenarios, many applica-
tions take actions directly, according to context changes:
the phone controller changed phone-answering behavior
based on meeting context. Other applications present
the right context at the right granularity to the right peo-
ple, with decision-making mostly left to human users;
the emergency response applications fit in this category.
The difference is likely caused by the complexity of de-
cision making and the cost of mistakes in different envi-
ronments.

We found that it was relatively easy to convey the
operator-composition model to the students in the sem-
inar course. We have, however, seen few cases of
code-based operator reuse besides simple location fil-
tering and transforming. Student project groups made
progress in parallel with little coordination, and some-
times ended up with multiple versions of similar opera-
tors. For instance-based reuse, we provided a deployed
operator that computed all badges’ current location and
every group used it as a primary source in their operator
graphs. Another reason we did not see much reuse is
that we did not have many sensors at that time and many
projects only needed a location filter. We expect Solar’s
strength to become more obvious when the environment
is instrumented with more sensors and more applications

3http://www.ists.dartmouth.edu/projects/frsensors/artemis/

are developed. For instance, we can easily replicate the
meeting detection hardware in other offices, and other
applications may use the context of meeting status.

The first prototype of Solar was a pure event-driven
system, in which each operator is a passive event han-
dler. While this approach is natural for many physical
sensors, we found it difficult to incorporate other types
of online sources, such as calendar information. The
query interface over pull channels in the current version
meets this need. Another drawback was a lack of built-
in timeout facility, so an operator could not gain con-
trol unless it receives an event: some fusion logic needs
to react to a lack of events as much as it reacts to new
events.

While Solar in a smart space is deployed on a LAN,
the emergency response applications require Solar to
be deployed in a WAN environment. It is known that
the P2P routing protocols, such as the one used by So-
lar, typically suffer from a large number of simultane-
ous node arrival and departure in a WAN environment.
In our case, however, the Planets are running on con-
trolled infrastructure nodes instead of on random hosts
provided by arbitrary users. Our dependency manage-
ment service makes Solar resilient to common failures
in WAN and our data-reduction technique handles the
buffer overflow caused by network congestions.

7 Related work

Schilit proposed one of the first architectures to sup-
port context-aware applications [28], which uses an Ac-
tiveMap service to disseminate location-related informa-
tion. Since then several researchers have designed sys-
tematic approaches for context-aware computing. The
Context Toolkit facilitates programming by wrapping
sensors with a well-defined widget interface and prede-
fined aggregators may combine several widget outputs
to produce context information [14]. The Context Fab-
ric takes a query-based approach, which automatically
constructs a data path to answer a context query [17].
The CIS, used by Aura, provides a database approach
where contextual queries are encoded in a SQL-like lan-
guage [19]. Nexus builds federated spatial world mod-
els based on which applications may reason about loca-
tion context [16]. These systems have a focus on the
interface between applications and system with the goal
to reduce the programming complexity. They, however,
lack studies on system issues such as scalability, mobil-
ity, and reliability, which are inherent challenges in ubi-
comp environments. Solar addresses these issues with
its overlay-based service platform and a set of unique
services, thus facilitating both the development and de-
ployment of context-aware applications in large-scale
scenarios.



The EventHeap used by iRoom project employs a tu-
plespace model, which aims to decouple the data pro-
ducer and consumer [18]. This loosely-coupled coordi-
nation model significantly reduces the component inter-
dependency and allows easy recovery from crashes. The
simple interface of a tuplespace, tuple retrieval based on
pattern matching, limits the expressiveness of data pro-
cessing. There is no direct support for context fusion. It
is also not clear how a tuplespace may scale.

In industry, the ContextSphere project from IBM re-
search shares many similarities with Solar. Its precedent,
iQueue, is also a distributed system that allows applica-
tion to specify data composers like Solar operators [13].
The group also developed an expressive domain-specific
language, iQL, for the composer specification [12]. We
believe many of Solar’s services could be easily used by
ContextSphere to manage the composers, such as our
context-sensitive directory, policy-driven flow control,
and dependency management. On the other hand, So-
lar may take advantage of iQL as an operator language,
which is more intuitive than Java while more expressive
than XSLT or XQuery.

Data aggregation is a useful technique inside sensor
networks to reduce unnecessary transmission [3, 15, 22].
Unlike Solar, these systems work at a lower level and are
designed for a resource-constrained environment, where
the focus is on power consumption and communication
costs. These systems, however, are complementary to
Solar since the aggregated results coming out of a sensor
network could supply one data stream as a Solar source.

The problem of achieving new composite service by
composing existing autonomous Web services is gener-
ating considerable interest in recent years. Researchers
have been working in composition languages [21],
toolkits [24], supporting systems [5, 4, 26], and load bal-
ancing and stability algorithms [25]. If we consider sen-
sors in Solar as output-only services, we could also en-
hance Solar’s composition model with previous results,
such as the more powerful composition language, the
rule-based composition engine, and algorithms for pre-
served quality of composed service.

8 Summary

In this paper we motivate and define the concept of
a Context Fusion Network (CFN), to support context-
aware mobile applications that need to aggregate data
from distributed sensors. Our operator-graph model de-
fines both push- and pull-based data communication and
exposes a simple interface to facilitate operator compo-
sition. One advantage of a CFN is the promotion of re-
usability, both code and instance re-usability. Our pro-
totype infrastructure, Solar, provides an overlay-based
platform and various management services for a CFN.

We design and implement the services to make Solar
a flexible, scalable, mobility-aware, and self-managed
system for a heterogeneous and volatile ubicomp en-
vironment. We demonstrate the effectiveness of So-
lar with some applications we built for smart spaces
and emergency response; we evaluate the performance
or effectiveness of many of these services in other pa-
pers [9, 11, 10]. We also discuss some lessons we
learned from our experience.
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