
Available at URL ftp://ftp.cs.dartmouth.edu/TR/TR98-331.ps.Z

Utility Driven Mobile-Agent Scheduling

Dartmouth Technical Report PCS-TR98-331�

Jonathan Bredin, David Kotz, and Daniela Rus

Department of Computer Science

Dartmouth College

Hanover, NH 03755

fjonathan, dfk, rusg@cs.dartmouth.edu

October 3, 1998

Abstract

Mobile agents are programs capable of migrating from one host

machine to another. We propose that mobile agents purchase re-

source access rights from host machines thereby establishing a market

for computational resources and giving agents a metric to evenly dis-

tribute themselves throughout the network. Market participation re-

quires quantitative information about resource consumption to de�ne

demand and calculate utility.

We create a formal utility model to derive user-demand functions,

allowing agents to e�ciently plan expenditure and deal with price


uctuations. By quantifying demand and utility, resource owners can

precisely set a value for a good. We simulate our model in a mobile

agent scheduling environment and show how mobile agents may use

server prices to distribute themselves evenly throughout a network.

1 Introduction

Mobile agents are programs that may, under their own volition, jump from

one host and resume execution at another host. We propose using electronic

�Revised October 3, 1998

1



markets to regulate agent abilities and to create incentive for host owners

to allow foreign agents access to their domains. This method of regulation

requires hosts (resource owners) setting prices for outside access and allows

incoming agents (resource buyers) to buy access with an abstract currency.

We wish to use a market system to regulate agents, encourage them to

act responsibly, and evenly distribute themselves throughout the network.

Ideally, prices and congestion will be highly correlated: a congested resource

will become more expensive. Participants have a �nite amount of currency,

thus agents have incentive to attempt to evenly spread themselves through-

out the network. This has the e�ect of implicitly distributing the decision-

making processes avoiding a central point of control. Finally, a large group of

independent agents can be thought of as a community, which gives an exper-

imental platform for developing and testing coordination algorithms inspired

be human societies.

For example, a mobile agent may migrate to a machine to access a par-

ticular database. The agent arrives with some amount of electronic cash

accepted by the server. The agent may plan to save some of the cash for

future points in its itinerary or simply return the change to the user. The

server's owner then uses the proceeds of the sale to endow her own agents or

possibly transfer the revenue into some other currency, say U.S. dollars.

The agent might express a preference to pay higher prices for faster ser-

vice. The server then calculates a price and a resource allocation for all

present agents.

As more agents arrive at the site, the server will most likely raise the price

of service to maximize pro�ts. Rising prices encourage prospective agents to

look elsewhere. This gives agents a mechanism to compare server congestion

as well as incentive to distribute themselves evenly across the network.

There are several methods of pricing electronic markets proposed in [GSW97a,

MMMM95, WHH+92, WWWMM98, CW98], but little work has been done

on calculating mobile agents' or users' demand and utility. In this context,

utility denotes the satisfaction that a user or agent derives from consuming

a given resource. A commonly used utility model in microeconomics is the

Cobb-Douglas utility function [PR92], which we apply to generate functions

to model user demand and simulate agent resource markets.

In this model, an agent's demand function takes the market price for

a good and determines the amount that the agent would like to buy. A

demand function could be used by agents to determine when and how much

of a resource to buy. Individual agents' demand functions are derived from

2



utility functions.

A market-demand function determines how much the market, as an ag-

gregate entity, will buy at any given price. To set prices, sellers must estimate

the market-demand function. In doing this, resource owners discover infor-

mation necessary to optimally price their resources.

Normally, a vendor must take its competitors' immediate actions into

account. In our model, competing vendors are typically located at other sites

and agents may only deal with those vendors currently at the site. However,

agents have the capability to relocate to more a desirable location to deal

with other vendors and we assume that agents have some knowledge about

prices of resources throughout the network.

Market-demand functions are calculated from the demand of individu-

als participating in the market. A natural problem that arises is how the

seller acquires information concerning individual demand. In this paper we

examine a solution that uses a form of auction where buyers submit demand

functions, which sellers use to compute competitive prices. An important

aspect of this approach is setting up the auction so that there is incentive for

prospective buyers to be honest in their bidding.

We study this style of market with the intent of applying it to an existing

mobile-agent system, D'Agents [Gra97], and to other related applications.

One problem mobile-agent system designers face is how to allocate resources

to agents. Here, we de�ne resources as access to any computing device or

service an agent may use. Examples include compute or network access time

and database access. We hope to �nd empirical evidence that markets pro-

vide agents with the motivation to evenly distribute themselves throughout

the network.

In this paper we present a formal utility model and evaluate its use in a

mobile-agent scheduling system. In particular, we examine its e�ectiveness in

balancing load and the overhead of information required to drive the system.

This paper is organized as follows. We �rst discuss why mobile agents

require regulation and why markets are a good candidate method. We brie
y

cover existing relevant work. Then we present a utility model and show how

agent servers can compute e�cient prices for a scheduling resource. We

discuss a simulated implementation of our model and we conclude with some

remarks on our future work that concerns load balancing and mitigating

mobile agents' risk through the use of call options.

3



2 Motivation

Consider a mobile-agent system in which agents migrate to a random host

to perform their computation. Initially, for simplicity, assume that all hosts

are identical. An active unregulated mobile-agent system has a propensity

to allow signi�cant groups of agents to accumulate at a single site. A quick

calculation gives us a rough estimate of the expected highest load in the

network by using a standard application of the Cherno� bound [SW94]. If X

is a sum of independent random variables, Xi, where each Xi 2 [0; 1], then

for any � > 0:

Pr[X � (1 + �)�] � e��min(�;�2)=3

where � is the expected value of X. Let n denote the number of agents in the

system and Xi the event that the i
th agent jumps to a given host. Assuming

that the Cherno� bound is tight and that agents have an equal chance of

ending up at any one of m hosts, then we would expect some site to have a

reasonable chance of hosting a cluster of agents of size:

n=m+max(
p
3c lnm; 3 lnm)

Where n=m is the expected number of agents per site. The estimate is

obtained by setting the right hand side of the Cherno� bound to 1=m and

solving for �. If there is a 1=m chance that more than this number of agents

will jump to a given site, then there is approximately a 1�(1�1=m)m chance

of at least one site experiencing this load.

2.1 Markets

Since hosts risk having a signi�cant additional load and expose themselves

to possible security problems by allowing additional users, there is little in-

centive for a system owner to open up their system to a mobile-agent system,

greatly limiting mobile-agent applications.

A network such as a mobile-agent system has a value that is quadratic to

the number of users. By creating incentive for more hosts to participate in

the mobile-agent system, we increase its intrinsic value.

We propose to establish a system that rewards owners for opening their

resources to the public: allow resource owners to sell access to outside users

and have resource owners distribute the proceeds to users at their sites, who

4



will in turn give cash to their own agents to use elsewhere. Essentially, this

creates an economy of agents.

In addition to reimbursing resource owners, the use of a market to control

mobile agents has the potential to evenly distribute agent load throughout the

network. Generally, there is a strong correlation between consumer demand

(i.e. generating congestion) and higher prices. Thus a site experiencing a

high load should set a higher price to maximize pro�ts and to encourage

agents to move to a site charging a lower price.

2.2 Utility

A market's e�ciency depends on the consumers' ability to assess their needs

and then make rational decisions that maximize their utility. Here, utility

is a measure of the pleasure a market participant derives from consumption

of a good. There are few studies about the source or measurement of agent

utility in an electronic market.

Without formalizing utility, there is little certainty in the validity of eco-

nomic choices. Here we apply well-known utility models to market-structured

agent systems and examine the results. Primarily, we are concerned with

three attributes that a�ect agents.

The �rst property is cost. We limit every agent's monetary resources, so

an agent that pays a higher price for service e�ectively limits the amount

of utility it can generate in the future. This is an example of how currency

can be considered an abstract good representing future consumption, even

though cash holdings have no direct immediate value.

The second property we use is quality of service measured in terms of

completion time. This is dependent on resource congestion and the hardware

providing service.

There could be other qualities besides completion time. In information-

retrieval tasks, for example, accuracy is an issue. This can be a di�cult

concept to measure algorithmically, so we will consider it in this paper.

Finally, there may be some question of an agent's chance of successfully

completing a task. For some users, there is utility in risk avoidance. It would

be perfectly reasonable for users to negotiate the level of risk based upon their

preferences. For example, a user might want to pay more for a task that will

complete with high probability. Conversely, a user might expect a discount

on a service of questionable reliability.

5



3 Related Work

There is a substantial body of work on pricing in electronic markets. There

are two methods: systems can compute the optimal equilibrium prices exactly

or estimate the equilibrium prices based upon the past.

We are primarily interested in the former, and we build upon ideas taken

from WALRAS [CW98] and Smart Auctions [MMV95] where sellers com-

pute equilibrium prices by soliciting bids from buyers. In WALRAS, bids are

demand functions constructed from a vector of current prices. There is an

auctioneer for every good. Bids are submitted to the auctioneers, who com-

pute a price to match supply and demand. The auctioneers notify prospective

buyers of the new prices so that they may recalibrate demand functions for

future iterations. The process repeats until prices reach a steady state.

Smart Auctions uses a simpler algorithm. Here, sellers attempt to sell

some �xed quantity of a good and receive price bids from buyers. The winning

bid is the highest bid, but the price is assigned to be the highest losing bid,

giving buyers incentive to submit honest bids.

If the process of computing prices exactly is costly or otherwise infeasible,

a di�erent approach is to assume that an equilibrium exists and that a mature

market has an equilibrium that it is normally near. Using the recent past

and feedback from user consumption, it is possible to adjust past prices to

compute e�cient current prices [GSW97b].

4 A Utility Model

To allow agents to plan their expenditures, we establish a formal goal at

which agents aim when making decisions. In economic systems, participants

generally try to maximize their utility, but we have yet to quantify utility or

see it quanti�ed elsewhere. We use a modi�cation of the traditional Cobb-

Douglas model from textbook microeconomics.

The Cobb-Douglas utility function is a frequently used method of express-

ing an individual's utility [PR92]. For two goods, S and R, the Cobb-Douglas

utility function is:

U(S;R) = a ln(S) + (1� a) ln(R) (1)

where S and R are the quantities consumed and a is some real number in [0; 1]

that describes an individual's taste for S relative to R. Representing utility

6



in this manner provides us with diminishing marginal utility: a common

theme in life; having a lot of something is nice, but having twice as much is

not twice as nice.

Consider a scenario where agents are concerned with two qualities: pri-

ority in some scheduling system and the amount of cash that they have after

being scheduled. This models a situation where a mobile agent jumps to a

machine and requests a block of execution time with some general priority.

For simplicity, we bundle together all of an agent's computational require-

ments.

First, we modify the utility function to account for the size of an agent's

task:

U(S;R) = a ln(QS) + (1� a) ln(R) (2)

where Q is the size of the job in some \units," S is the throughput in job

units per second, and R is the extent of the agent's remaining currency supply

upon completing the task. The product QS weights the importance of the

job with respect to its size. Using the product of Q and S instead of the

quotient gives us units expressed in time, but execution time is an economic

bad for the agent. The use of seconds as units would require us to modify

the Cobb-Douglas further.

Agents have a budget constraint of:

I = QP +R (3)

where I is the agent's initial endowment, QP is the expenditure (quantity Q

times price P ), and R is remainder (savings).

It is now possible to derive an individual's demand function by solving

for the Marginal Rate of Substitution, MRS, of performance, S, for savings,

R, which we denote as MRSSR. This is the quotient of the partial derivative

of utility with respect to performance, @U=@S, and the partial derivative of

utility with respect to savings, @U=@R. Here theMRSSR measures how much

savings an agent is willing to give up to achieve one more job unit per second

performance. At a competitive equilibrium, MRSSR should be equal to the

price per job unit, P .

@U=@S

@U=@R
=

aR

(1� a)S
= P (4)

7



We use Equation (4) and the budget constraint, Equation (3), to generate

a demand function that returns the scheduling priority (in job units per

second) an agent would buy for a given price. Note that this function should

be restricted to non-negative values.

S = max

 
a(I �QP )

(1� a)P
; 0

!
(5)

Market demand is computed by composition: for n agents, sum their

individual demand functions:

Stotal =
X

all agents i

max

 
ai(Ii �QiP )

(1� ai)P
; 0

!
(6)

Ii; ai, and Qi are constants describing the agents wishing to execute at

the host. In the short term, Stotal is �xed and we assume that the sellers have

no ability to create additional resources. Given that agents have the ability

to travel to other sites selling the same resource, there is competition among

host sites. Sellers can maximize both total utility and the pro�ts by selling

all of the available resources to agents.

The clearing price for a system with n agents is computed by solving

Equation 6 for P yielding:

P =

P
i
aiIi
1�ai

Stotal +
P

i
aiQi

1�ai

8i 2 [1 : : : n] : PQi � Ii (7)

When PPQi > Ii, the �rst argument of the max() function in Equation 6 is

negative, thus the terms drop out from the sum.

Every time an agent arrives at a host site, the host computes the new mar-

ket demand, though Equation (7) gives only a static solution where all agents

arrive at the same time. By adjusting the utility function in Equation (2) to

account for consumption in two sessions, Q1 and Q2, with service rates S1

and S2, time lengths T1 = Q1=S2 and T2 = Q2=S2, and per unit prices P1 and

P2, we can arrive at a general solution. The new utility function becomes:

U = a ln

 
(Q1 +Q2)

 
Q1 +Q2

T1 +Q2=S2

!!
+ (1� a) ln(I �Q1P1 �Q2P2) (8)

8



As in Equation (2), the term inside the �rst logarithm is derived from the

product of the size of the task, Q1+Q2, and the average throughput. Q2=S2

is substituted for T2 to eliminate a variable.

By computing the MRSSR in the same fashion as the static solution, we

arrive at the same solution if T1 and Q1 are zero. Otherwise the agent's

demand function for the second period is:

S2 =
�Q2 +

r
Q2

2 +
4T1aQ2(I�Q1P1�Q2P2)

(1�a)P2

2T1
if T1; Q1 6= 0 (9)

Again, market demand is computed by summing the individuals' demand

functions, though now the clearing price must be found using a numeri-

cal root-�nding method. Locating the clearing price can be done relatively

quickly using one of several algorithms from [PTVF92] since the aggregate

demand is well behaved around the market-clearing price.

Since hosts have preferences for resource access similar to agents, the

host's consumption can be taken into account by including the host's demand

in these calculations, and e�ectively having the host pay itself for access.

Note that the host can pay itself as much as it wants to discourage foreign

access or increase the priority of local jobs.

5 A Simulation

We would like to investigate a market's e�ciency as a load balancing in-

strument. We have implemented a simulation of an agent scheduler accept-

ing foreign agents having preferences described by our Cobb-Douglas based

utility function, Equation (8). Figure 1 shows a diagram of the simulation

execution of each server.

5.1 A Single Server

We �rst proceed by assuming that there is only a single site agents. The

simulation is implemented in C++ with numerical routines from [PTVF92].

In our simulation, the server allocates execution time to incoming agents

by searching the aggregate demand function for a market clearing price every

time an agent enters or exits the system. Agents arrive at a Poisson arrival

rate with exponentially distributed job sizes, Q. These two distributions are

9



consumption
count

increment time
to next event

compute clearing
price

increment

arrival?

allocate priority

user exits

add user

start

yesno
is next event

Figure 1: A 
owchart illustrating the actions of the simulator.

standard in processor queueing systems. The other two input parameters are

agent-scheduling-saving preferences, a, and endowment size, I.

Each agent has an exponentially distributed number of destination hops

in its itinerary. The a parameter denotes how much the agent wishes to save

for consumption at future destinations and is computed from the ratio of the

computation at the next destination to the remaining computation in future

hops.

I is computed from a, Q, and a normally distributed random variable

de�ning the agent's owner's view of the job importance to weight the impor-

tance of a job linearly with its size. Our decision to use a normally distributed

income parameter is arbitrary; the motivation is provide some variation of

user preferences.

Users express their preference for scheduling priority by establishing their

agent's endowments. The agent then uses the a parameter to express how

much of its endowment it would like to spend at a given site. The simulation

computes what portion of the original endowment is left given the amount

of the job done to adjust I to re
ect previous consumption.

The simulation shows what we expected: resource price is positively cor-

10



related with the number of users present. To measure market e�ciency, we

use the Spearman rank correlation coe�cient [PTVF92] of price to load,

where load is the sum of the sizes of jobs waiting to be completed.

Varying the client arrival intensity has little e�ect on the load-price cor-

relation. Interestingly, the market requires some variation in user preference

to e�ciently allocate resources. Figure 2 shows how market e�ciency, ex-

presses as load-price correlation, is directly related to the variance in agent

endowment. Here we examine the endowment relative to the job size, the

per-unit endowment. The variance is expressed as a fraction of the mean.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Lo
ad

-P
ric

e 
S

pe
ar

m
an

 R
an

k 
C

or
re

la
tio

n

Endowment Variance/Endowment Mean

Figure 2: Price-load correlation versus agent endowment variance expressed

as the variance of per-unit endowment relative to the mean per-unit endow-

ment.

Given a bursty Poisson arrival process, the market does a surprisingly

good job at �nding a stable price. Figure 3 shows a histogram of prices

through a single simulation. About eighty percent of transactions have a

price within �ve percent of the mean price though there are a few transactions

at prices far from the mean. Increasing the load has little e�ect on the

distribution of prices.

11



0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120

F
re

qu
en

cy

Price

Figure 3: A histogram of the per unit price of computation through a single

simulation with twenty percent capacity mean load. Note that the ordinate

uses a logarithmic scale.

5.2 Multiple Servers

One of the driving assumptions in the use of markets is that they e�ciently

and implicitly distribute the decision-making processes. To test this, we

constructed a parallel simulation of mobile agents having to choose between

multiple identical services at separate sites.

Most load-balancing systems use mean response time as a metric of e�ec-

tiveness. Since our mobile agents are not only concerned with performance

but also with budget expenditure, mean response time is not necessarily a

good measure of system performance. Therefore we compare mean client

utility in identically seeded experiments to demonstrate the e�ectiveness of

pricing in distributing computing loads.

We make the assumption that clients believe that the additional load

incurred by their tasks will be negligible to the server. We leverage this to

simplify shopping. The client needs to examine the current price of access at

a server and calculate how much the client would like to buy given the price.

12



As in the previous section, agents have a Poisson arrival rate with expo-

nential distributed job sizes. The variable element is now how agents choose

their destination. We examine two possibilities:

1. We may assume that there is perfect price knowledge, i.e, another agent

provides accurate up-to-date pricing information, possibly for a fee,

though we do not account for any such fees here.

2. An agent might choose only to look at the price of a �xed number of

service locations.

For now, we assume that the population of clients use identical strategies.

When we assume that clients' location is �xed at start up, there is the

question of how to place the agents. Agents may look at any number of

servers, but there might be a cost associated with \shopping." The results of

a simulation using ten servers shown in Figure 4 describe the average utility

derived when clients randomly choose a server, choose the best among two

randomly evaluated servers, choose the best among �ve randomly selected

servers, and choose the best of all ten servers.1 We use an M/M/10 queue, a

single server with the capability of ten, as an ideal baseline comparison, since

using an M/M/10 queue is equivalent to assuming that agents can migrate

at any time to the \best" host.

The majority of the time, the price at a server occurs near the mean

as denoted by the histogram in Figure 3. Because of this, clients generally

do not have to check very many servers to �nd reasonable performance. In

our simulation, checking the status of two servers was practically as good as

checking all of them.

The clients' ability to �nd a random server provides a great deal of the

load balancing, but the ability to compare the status of a small number of

randomly selected servers smoothes the load even more as exhibited by the

higher utility values. In fact, checking a small number of servers comes very

close to providing ideal load balancing in terms of utility.

6 Discussion and Future Work

We see four important issues in using this model for resource scheduling:

1The data has been smoothed with a locally weighted �lter to account for noise.

13



1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ea

n 
U

til
ity

Arrival Rate/Capacity

random
shop 2

shop all
M/M/10

Figure 4: Mean utility versus the arrival rate relative to capacity.

� What are the roles of honesty and trust?

� What issues of policy design need to be corrected?

� How do we make the system even more stable?

� How is it possible to expand the model to handle multiple goods?

6.1 Honesty and Trust

One might argue that agents should not be willing to share budget infor-

mation with their hosts. If budget information is truly sensitive, the agent

should not be trusted with it; however the agent is already at the mercy of the

host site, since the host can examine the agent in any fashion it likes [Gra96].

Certainly, hosts that abuse agents will earn a bad reputation, and agents

will be reluctant to travel to such sites, thus lowering potential earnings from

resource sales. It is possible that important tasks could be performed jointly

by several agents in a \chunking" scheme as in [San97] to give hosts incentive

to act honestly.

14



On the other side of the transaction, there is the question of whether

it is an agent's best interest to announce its preference for scheduling (a).

Intuitively, overvaluing a could oblige an agent to pay an in
ated price.

On the other hand, undervaluing the parameter could drive the price of

scheduling down at the risk of poor performance.

6.2 Cobb-Douglas and Economic Mechanism Design

We do see one drawback with the Cobb-Douglas utility function as applied

to this scenario: the utility approaches negative in�nity as S and R go to

zero, creating an extremely unhappy agent. Initially, this is not a problem

if the agent has the ability to assess market conditions and not enter unless

there is a reasonably high chance of completion. If market conditions take a

downturn midway through an agent's execution, one would expect a utility

model to account for the possibility that the agent cuts its losses and exits

the market, but it is generally desirable to construct market mechanisms such

that an agent will be better o� utilizing the mechanism than abstaining from

use[WW98].

6.3 Strengthening Stability

One important quality of our model is that it quickly calculates a relatively

stable price even given a bursty stream of incoming requests. Approximately

80 percent of all transactions occur within �ve percent of the mean price.

Infrequently, prices can jump well beyond the mean price. For applica-

tions where this is undesirable it would be possible for servers to sell call

options for scheduling, which are contracts allowing the holder to access the

resource for sometime in the future at a prearranged price. Such an option

might stabilize prices even further. [SHC96] shows that speculation on these

options might further stabilize the market.

Standard stock pricing models are based upon random walks, or modi�ed

Weiner processes [Chr97]. In the absence of shifts in demand, our model's

prices de�nitely do not display the behavior of a random walk since prices

tend to return to an equilibrium. Further statistical analysis, possibly with

a real-life application, will give more insight on how to calculate the value of

options to be used in our model.

15



6.4 Expanding the Market

Finally, our model only allocates one service among agents. In reality, agents

consume many resources. Computing general equilibrium prices exactly when

the market consists of more than two goods is possibly intractable [Ygg98,

PTVF92, p. 379]. We will address the problem of adding more commodities

to our market by investigating the needs of actual mobile-agent applications

to construct a general pro�le of consumable resources. This knowledge will

allow us to approximate all resources as a single abstract resource represent-

ing a weighted bundle of the consumables.

7 Summary

We present a mobile-agent scheduling method based upon �rst microeco-

nomic principles. Agents are assumed to have preferences corresponding to

a Cobb-Douglas utility function, which we use to describe user satisfaction

in terms of savings and priority scheduling.

From this utility function, we describe how agents can create a demand

function to plan expenditure to maximize their utility. Using agent demand,

a host site can calculate optimal scheduling prices and hence an allocation.

We simulate a scheduler using these economic ideas to show that agents

can dynamically adapt their consumption habits to account for resource con-

tention. While it is likely that an agent will complete its task, there is

uncertainty in performance stemming from price 
uctuations. It would be

desirable for host sites to sell options to access an agreed upon portion of the

resource pool at a �xed price for a period of time. This sort of instrument is

essentially an American-style call option.

Acknowledgments

This paper describes research done in the Mobile Agents Laboratory at Dart-

mouth. This work is supported in part by the Navy and Air Force under

contracts ONR N00014-95-1-1204 and MURI F49620-97-1-0382, Rome Labs

under contract F30602-98-C-0006, and DARPA under contract F30602-98-2-

0107. Robert Gray implemented the core D'Agents system. We are grateful

to him for his insights in mobile-agent systems.

16



References

[Chr97] Neil A. Chriss. Black-Scholes and Beyond Option Pricing

Models. Mc-Graw-Hill, New York, 1997.

[CW98] John Q. Cheng and Michael P. Wellman. The WALRAS al-

gorithm: A convergent distributed implementation of general

equilibrium outcomes. Journal of Computational Economics,

1998. To appear.

[Gra96] Robert S. Gray. Agent Tcl: A 
exible and secure mobile-

agent system. In Proceedings of the 1996 Tcl/Tk Workshop,

pages 9{23, July 1996.

[Gra97] Robert Gray. Agent Tcl: A 
exible and secure mobile-

agent system. PhD thesis, Dartmouth College, June 1997.

Available as Dartmouth Computer Science Technical Report

TR98-327.

[GSW97a] Alok Gupta, Dale O. Stahl, and Andrew B. Whinston. Pri-

ority pricing of integrated services networks. In McKnight

and Bailey [MB97], pages 323{352.

[GSW97b] Alok Gupta, Dale O. Stahl, and Andrew B. Whinston. A

stochastic equilibrium model of Internet pricing. Journal of

Economic Dynamics and Control, 21:697{672, 1997.

[MB97] Lee W. McKnight and Joseph P. Bailey, editors. Internet

Economics. MIT Press, Cambridge, MA, 1997.

[MMMM95] Je�rey K. MacKie-Mason, John Murphy, and Liam Murphy.

Responsive pricing in the Internet. In McKnight and Bailey

[MB97], pages 279{304.

[MMV95] Je�rey K. MacKie-Mason and Hal R. Varian. Pricing the

Internet. In Public Access to the Internet, pages 269{314.

MIT Press, Cambridge, MA, 1995.

[PR92] Robert S. Pindyck and Daniel L. Rubinfeld. Microeconomics.

Macmillan Publishing Company, New York, 1992.

17



[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling,

and Brian P. Flannery. Numerical Recipes in C. Cambridge

University Press, Cambridge, UK, 1992.

[San97] Tuomas Sandholm. Unenforced ecommerce transactions.

IEEE Internet Computing, 1(6):47{55, November 1997.

[SHC96] Ken Steiglitz, Michael L. Honig, and Leonard M. Cohen.

A computational market model based on individual action.

In Scott H. Clearwater, editor, Market-Based Control, chap-

ter 1, pages 1{27. World Scienti�c, Singapore, 1996.

[SW94] Henry Stark and John W. Woods. Probability, Random Pro-

cesses, and Estimation Theroy for Engineers. Prentice-Hall,

Upper Saddle River, NJ, 1994.

[WHH+92] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman,

Je�rey O. Kephart, and W. Scott Stornetta. Spawn: A

distributed computational economy. IEEE Transactions on

Software Engineering, 18(2):103{117, February 1992.

[WW98] Michael P. Wellman and Peter R. Wurman. Market-aware

agents for a multiagent world. Robotics and Autonomous

Systems, 1998. To appear.

[WWWMM98] William E. Walsh, Michael P. Wellman, Peter R. Wurman,

and Je�rey K. MacKie-Mason. Some economics of market-

based distributed scheduling. In Eighteenth International

Conference on Distributed Computing Systems, May 1998.

[Ygg98] Fredrik Ygge. Market-Oriented Programming and its Appli-

cation to Power Load Management. PhD thesis, Lund Uni-

versity, June 1998.

18


